import os import gradio as gr from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline # ------------------------------ # Load model # ------------------------------ #model_id = "gemma_3_270m_model" # your model folder or HF repo model_id = "google/gemma-3-270m" # your model folder or HF repo hf_token = os.environ.get("HF_TOKEN") # read from Hugging Face Secrets tokenizer = AutoTokenizer.from_pretrained( model_id, use_auth_token=hf_token, trust_remote_code=True ) model = AutoModelForCausalLM.from_pretrained( model_id, use_auth_token=hf_token, trust_remote_code=True, device_map="auto" ) pipe = pipeline( "text-generation", model=model, tokenizer=tokenizer ) # ------------------------------ # Gradio interface # ------------------------------ def generate_text(prompt, max_length=100): """Generate text from the model""" output = pipe(prompt, max_length=max_length) return output[0]['generated_text'] # Create Gradio interface demo = gr.Interface( fn=generate_text, inputs=[ gr.Textbox(label="Prompt", placeholder="Enter your text here..."), gr.Slider(label="Max length", minimum=10, maximum=500, value=100) ], outputs=gr.Textbox(label="Generated Text"), title="Gemma-3-270M Text Generator", description="Enter a prompt and the model will generate text." ) # Launch the app if __name__ == "__main__": demo.launch()