File size: 1,443 Bytes
5c463c7
b28394f
142ae70
831f2f3
b28394f
 
 
359d8c5
 
b28394f
a4a80e2
b28394f
 
 
 
 
831f2f3
142ae70
 
b28394f
5c463c7
 
142ae70
831f2f3
142ae70
 
 
 
831f2f3
b28394f
 
 
 
 
 
69d0460
b28394f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
import os
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline

# ------------------------------
# Load model
# ------------------------------
#model_id = "gemma_3_270m_model"   # your model folder or HF repo
model_id = "google/gemma-3-270m"   # your model folder or HF repo
hf_token = os.environ.get("HF_TOKEN")  # read from Hugging Face Secrets

tokenizer = AutoTokenizer.from_pretrained(
    model_id,
    use_auth_token=hf_token,
    trust_remote_code=True
)

model = AutoModelForCausalLM.from_pretrained(
    model_id,
    use_auth_token=hf_token,
    trust_remote_code=True,
    device_map="auto"
)

pipe = pipeline(
    "text-generation",
    model=model,
    tokenizer=tokenizer
)

# ------------------------------
# Gradio interface
# ------------------------------
def generate_text(prompt, max_length=100):
    """Generate text from the model"""
    output = pipe(prompt, max_length=max_length)
    return output[0]['generated_text']

# Create Gradio interface
demo = gr.Interface(
    fn=generate_text,
    inputs=[
        gr.Textbox(label="Prompt", placeholder="Enter your text here..."),
        gr.Slider(label="Max length", minimum=10, maximum=500, value=100)
    ],
    outputs=gr.Textbox(label="Generated Text"),
    title="Gemma-3-270M Text Generator",
    description="Enter a prompt and the model will generate text."
)

# Launch the app
if __name__ == "__main__":
    demo.launch()