File size: 8,106 Bytes
a3de977 548170b 61dc572 548170b a888fd4 65bf846 548170b 636ed51 f2dd671 c6eb060 636ed51 f2dd671 c6eb060 636ed51 f2dd671 636ed51 f2dd671 c6eb060 636ed51 b607811 a888fd4 658d610 548170b 61dc572 a888fd4 658d610 8e4e91e a888fd4 d75590d 658d610 d75590d 61dc572 a888fd4 bc9b806 a888fd4 61dc572 a888fd4 61dc572 8d1fad8 61dc572 eb7610c 4cd61dc 9d6b6a0 4cd61dc 8d1fad8 61dc572 a888fd4 61dc572 c697272 a888fd4 a6144b9 9878cbc 636ed51 95c9069 4877844 b607811 9878cbc a888fd4 77e6565 548170b dbf58ba 46023a4 91fbf43 548170b 46023a4 548170b 46023a4 548170b 61dc572 548170b 61dc572 548170b 61dc572 548170b 2659e69 548170b 713161d 8d1fad8 a6144b9 545c29b e965e32 548170b 46023a4 713161d 61dc572 a888fd4 b3933a0 61dc572 a888fd4 61dc572 713161d b607811 c4be9e9 61dc572 548170b 61dc572 548170b 61dc572 548170b 77e6565 568eeba |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 |
import os
import gradio as gr
from prediction import run_sequence_prediction
import torch
import torchvision.transforms as T
from celle.utils import process_image
from celle_main import instantiate_from_config
from omegaconf import OmegaConf
from huggingface_hub import hf_hub_download
def bold_predicted_letters(input_string: str, output_string: str) -> str:
result = []
i = j = 0
input_string = input_string.upper()
output_string = output_string.upper()
while i < len(input_string):
if input_string[i:i+6] == "<MASK>":
start_index = i
end_index = i + 6
while end_index < len(input_string) and input_string[end_index:end_index+6] == "<MASK>":
end_index += 6
result.append("**" + output_string[j:j+(end_index-start_index)//6] + "**")
i = end_index
j += (end_index-start_index)//6
else:
result.append(input_string[i])
i += 1
if input_string[i-1] != "<":
j += 1
return "".join(result)
def diff_texts(string):
new_string = []
bold = False
for idx, letter in enumerate(string):
if letter == '*' and string[min(idx + 1, len(string)-1)] == '*' and bold == False:
bold = True
elif letter == '*' and string[min(idx + 1, len(string)-1)] == '*' and bold == True:
bold = False
if letter != '*':
if bold :
new_string.append((letter,'+'))
else:
new_string.append((letter, None))
return new_string
class model:
def __init__(self):
self.model = None
self.model_name = None
self.model_path = None
def gradio_demo(self, model_name, sequence_input, image):
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
if self.model_name != model_name:
if self.model_path is not None:
os.remove(self.model_path)
del self.model
self.model_name = model_name
model_ckpt_path = hf_hub_download(repo_id=f"HuangLab/{model_name}", filename="model.ckpt")
self.model_path = model_ckpt_path
model_config_path = hf_hub_download(repo_id=f"HuangLab/{model_name}", filename="config.yaml")
hf_hub_download(repo_id=f"HuangLab/{model_name}", filename="nucleus_vqgan.yaml")
hf_hub_download(repo_id=f"HuangLab/{model_name}", filename="threshold_vqgan.yaml")
# Load model config and set ckpt_path if not provided in config
config = OmegaConf.load(model_config_path)
if config["model"]["params"]["ckpt_path"] is None:
config["model"]["params"]["ckpt_path"] = model_ckpt_path
# Set condition_model_path and vqgan_model_path to None
config["model"]["params"]["condition_model_path"] = None
config["model"]["params"]["vqgan_model_path"] = None
base_path = os.getcwd()
os.chdir(os.path.dirname(model_ckpt_path))
# Instantiate model from config and move to device
self.model = instantiate_from_config(config.model).to(device)
self.model = torch.compile(self.model,mode='max-autotune')
os.chdir(base_path)
if "Finetuned" in model_name:
dataset = "OpenCell"
else:
dataset = "HPA"
nucleus_image = image['image'].convert('L')
protein_image = image['mask'].convert('L')
to_tensor = T.ToTensor()
nucleus_image = to_tensor(nucleus_image)
protein_image = to_tensor(protein_image)
stacked_images = torch.stack([nucleus_image, protein_image], dim=0)
processed_images = process_image(stacked_images, dataset)
nucleus_image = processed_images[0].unsqueeze(0)
protein_image = processed_images[1].unsqueeze(0)
protein_image = protein_image/torch.max(protein_image)
formatted_predicted_sequence = run_sequence_prediction(
sequence_input=sequence_input,
nucleus_image=nucleus_image,
protein_image=protein_image,
model=self.model,
device=device,
)
print('test2')
formatted_predicted_sequence = formatted_predicted_sequence[0]
formatted_predicted_sequence = formatted_predicted_sequence.replace("<pad>","")
formatted_predicted_sequence = formatted_predicted_sequence.replace("<cls>","")
formatted_predicted_sequence = formatted_predicted_sequence.replace("<eos>","")
formatted_predicted_sequence = bold_predicted_letters(sequence_input, formatted_predicted_sequence)
formatted_predicted_sequence = diff_texts(formatted_predicted_sequence)
return T.ToPILImage()(protein_image[0,0]), T.ToPILImage()(nucleus_image[0,0]), formatted_predicted_sequence
base_class = model()
with gr.Blocks(theme='gradio/soft') as demo:
gr.Markdown("## Inputs")
gr.Markdown("Select the prediction model. **Note the first run may take ~2-3 minutes, but will take 3-4 seconds afterwards.**")
gr.Markdown(
"- ```CELL-E_2_HPA_2560``` is a good general purpose model for various cell types using ICC-IF."
)
gr.Markdown(
"- ```CELL-E_2_OpenCell_2560``` is trained on OpenCell and is good more live-cell predictions on HEK cells."
)
with gr.Row():
model_name = gr.Dropdown(
["CELL-E_2_HPA_2560", "CELL-E_2_OpenCell_2560"],
value="CELL-E_2_HPA_2560",
label="Model Name",
)
with gr.Row():
gr.Markdown(
"Input the desired amino acid sequence. GFP is shown below by default. The sequence must include ```<mask>``` for a prediction to be run."
)
with gr.Row():
sequence_input = gr.Textbox(
value="M<mask><mask><mask><mask><mask>SKGEELFTGVVPILVELDGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPVPWPTLVTTFSYGVQCFSRYPDHMKQHDFFKSAMPEGYVQERTIFFKDDGNYKTRAEVKFEGDTLVNRIELKGIDFKEDGNILGHKLEYNYNSHNVYIMADKQKNGIKVNFKIRHNIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMVLLEFVTAAGITHGMDELYK",
label="Sequence",
)
with gr.Row():
gr.Markdown(
"Uploading a nucleus image is necessary. A random crop of 256 x 256 will be applied if larger. We provide default images in [images](https://huggingface.co/spaces/HuangLab/CELL-E_2/tree/main/images). Draw the desired localization on top of the nucelus image."
)
with gr.Row(equal_height=True):
#nucleus_image = gr.Image(
# source="upload",
# tool="color-sketch",
# label="Nucleus Image",
# interactive=True,
# image_mode="RGBA",
# type="pil"
#)
nucleus_image = gr.ImageMask(
label = "Nucleus Image",
interactive = "True",
image_mode = "L",
brush_color = "#ffffff",
type = "pil"
)
with gr.Row():
gr.Markdown("## Outputs")
with gr.Row(equal_height=True):
nucleus_crop = gr.Image(
label="Nucleus Image (Crop)",
image_mode="L",
type="pil"
)
mask = gr.Image(
label="Threshold Image",
image_mode="L",
type="pil"
)
with gr.Row():
gr.Markdown("Sequence predictions are show below.")
with gr.Row(equal_height=True):
# predicted_sequence = gr.Markdown(label='Predicted Sequence')
predicted_sequence = gr.HighlightedText(
label="Predicted Sequence",
combine_adjacent=True,
show_legend=False,
color_map={"+": "green"})
with gr.Row():
button = gr.Button("Run Model")
inputs = [model_name, sequence_input, nucleus_image]
outputs = [mask, nucleus_crop, predicted_sequence]
button.click(base_class.gradio_demo, inputs, outputs)
demo.queue(max_size=1).launch()
|