Update app.py
Browse files
app.py
CHANGED
|
@@ -1,119 +1,156 @@
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
-
from prediction import
|
| 3 |
import torch
|
| 4 |
import torchvision.transforms as T
|
| 5 |
from celle.utils import process_image
|
| 6 |
from PIL import Image
|
| 7 |
from matplotlib import pyplot as plt
|
|
|
|
|
|
|
| 8 |
|
| 9 |
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
|
|
|
| 13 |
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
else:
|
| 18 |
-
dataset = "HPA"
|
| 19 |
-
|
| 20 |
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 48 |
|
|
|
|
| 49 |
|
| 50 |
with gr.Blocks(theme='gradio/soft') as demo:
|
| 51 |
gr.Markdown("Select the prediction model.")
|
| 52 |
gr.Markdown(
|
| 53 |
-
"
|
| 54 |
)
|
| 55 |
gr.Markdown(
|
| 56 |
-
"
|
| 57 |
)
|
| 58 |
with gr.Row():
|
| 59 |
model_name = gr.Dropdown(
|
| 60 |
-
["CELL-
|
| 61 |
-
value="CELL-
|
| 62 |
label="Model Name",
|
| 63 |
)
|
| 64 |
with gr.Row():
|
| 65 |
gr.Markdown(
|
| 66 |
-
"Input the desired amino acid sequence. GFP is shown below by default.
|
| 67 |
)
|
| 68 |
|
| 69 |
with gr.Row():
|
| 70 |
sequence_input = gr.Textbox(
|
| 71 |
-
value="
|
| 72 |
label="Sequence",
|
| 73 |
)
|
| 74 |
with gr.Row():
|
| 75 |
gr.Markdown(
|
| 76 |
-
"Uploading a nucleus image is necessary. A random crop of 256 x 256 will be applied if larger. We provide default images in [images](https://huggingface.co/spaces/HuangLab/CELL-E_2/tree/main/images)
|
| 77 |
)
|
|
|
|
| 78 |
|
| 79 |
with gr.Row().style(equal_height=True):
|
| 80 |
nucleus_image = gr.Image(
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
invert_colors=True,
|
| 84 |
-
label="Nucleus Image",
|
| 85 |
-
interactive=True,
|
| 86 |
image_mode="L",
|
| 87 |
-
type="pil"
|
| 88 |
)
|
| 89 |
|
|
|
|
| 90 |
|
| 91 |
-
with gr.Row().style(equal_height=True):
|
| 92 |
-
nucleus_crop = gr.Image(
|
| 93 |
-
label="Nucleus Image (Crop)",
|
| 94 |
-
image_mode="L",
|
| 95 |
-
type="pil"
|
| 96 |
-
)
|
| 97 |
-
|
| 98 |
-
mask = gr.Image(
|
| 99 |
-
label="Threshold Image",
|
| 100 |
-
image_mode="L",
|
| 101 |
-
type="pil"
|
| 102 |
-
)
|
| 103 |
with gr.Row():
|
| 104 |
-
gr.Markdown("
|
| 105 |
|
| 106 |
with gr.Row().style(equal_height=True):
|
| 107 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 108 |
|
|
|
|
|
|
|
|
|
|
| 109 |
|
|
|
|
| 110 |
with gr.Row():
|
| 111 |
button = gr.Button("Run Model")
|
| 112 |
|
| 113 |
-
inputs = [model_name, sequence_input, nucleus_image]
|
| 114 |
|
| 115 |
-
outputs = [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 116 |
|
| 117 |
-
button.click(gradio_demo, inputs, outputs)
|
| 118 |
|
| 119 |
-
demo.launch(enable_queue=True)
|
|
|
|
| 1 |
+
import os
|
| 2 |
import gradio as gr
|
| 3 |
+
from prediction import run_image_prediction
|
| 4 |
import torch
|
| 5 |
import torchvision.transforms as T
|
| 6 |
from celle.utils import process_image
|
| 7 |
from PIL import Image
|
| 8 |
from matplotlib import pyplot as plt
|
| 9 |
+
from celle_main import instantiate_from_config
|
| 10 |
+
from omegaconf import OmegaConf
|
| 11 |
|
| 12 |
|
| 13 |
+
class model:
|
| 14 |
+
def __init__(self):
|
| 15 |
+
self.model = None
|
| 16 |
+
self.model_name = None
|
| 17 |
|
| 18 |
+
def gradio_demo(self, model_name, sequence_input, nucleus_image, protein_image):
|
| 19 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
|
| 21 |
+
if self.model_name != model_name:
|
| 22 |
+
self.model_name = model_name
|
| 23 |
+
model_ckpt_path = f"CELL-E_2-Image_Prediction/models/{model_name}.ckpt"
|
| 24 |
+
model_config_path = f"CELL-E_2-Image_Prediction/models/{model_name}.yaml"
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
# Load model config and set ckpt_path if not provided in config
|
| 28 |
+
config = OmegaConf.load(model_config_path)
|
| 29 |
+
if config["model"]["params"]["ckpt_path"] is None:
|
| 30 |
+
config["model"]["params"]["ckpt_path"] = model_ckpt_path
|
| 31 |
+
|
| 32 |
+
# Set condition_model_path and vqgan_model_path to None
|
| 33 |
+
config["model"]["params"]["condition_model_path"] = None
|
| 34 |
+
config["model"]["params"]["vqgan_model_path"] = None
|
| 35 |
+
|
| 36 |
+
base_path = os.getcwd()
|
| 37 |
+
|
| 38 |
+
os.chdir(os.path.dirname(model_ckpt_path))
|
| 39 |
+
|
| 40 |
+
# Instantiate model from config and move to device
|
| 41 |
+
self.model = instantiate_from_config(config.model).to(device)
|
| 42 |
+
self.model = torch.compile(self.model,mode='reduce-overhead')
|
| 43 |
+
|
| 44 |
+
os.chdir(base_path)
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
if "Finetuned" in model_name:
|
| 48 |
+
dataset = "OpenCell"
|
| 49 |
+
|
| 50 |
+
else:
|
| 51 |
+
dataset = "HPA"
|
| 52 |
+
|
| 53 |
+
nucleus_image = process_image(nucleus_image, dataset, "nucleus")
|
| 54 |
+
if protein_image:
|
| 55 |
+
protein_image = process_image(protein_image, dataset, "protein")
|
| 56 |
+
protein_image = protein_image > torch.median(protein_image)
|
| 57 |
+
protein_image = protein_image[0, 0]
|
| 58 |
+
protein_image = protein_image * 1.0
|
| 59 |
+
else:
|
| 60 |
+
protein_image = torch.ones((256, 256))
|
| 61 |
+
|
| 62 |
+
threshold, heatmap = run_image_prediction(
|
| 63 |
+
sequence_input=sequence_input,
|
| 64 |
+
nucleus_image=nucleus_image,
|
| 65 |
+
model=self.model,
|
| 66 |
+
device=device,
|
| 67 |
+
)
|
| 68 |
+
|
| 69 |
+
# Plot the heatmap
|
| 70 |
+
plt.imshow(heatmap.cpu(), cmap="rainbow", interpolation="bicubic")
|
| 71 |
+
plt.axis("off")
|
| 72 |
+
|
| 73 |
+
# Save the plot to a temporary file
|
| 74 |
+
plt.savefig("temp.png", bbox_inches="tight", dpi=256)
|
| 75 |
+
|
| 76 |
+
# Open the temporary file as a PIL image
|
| 77 |
+
heatmap = Image.open("temp.png")
|
| 78 |
+
|
| 79 |
+
return (
|
| 80 |
+
T.ToPILImage()(nucleus_image[0, 0]),
|
| 81 |
+
T.ToPILImage()(protein_image),
|
| 82 |
+
T.ToPILImage()(threshold),
|
| 83 |
+
heatmap,
|
| 84 |
+
)
|
| 85 |
|
| 86 |
+
base_class = model()
|
| 87 |
|
| 88 |
with gr.Blocks(theme='gradio/soft') as demo:
|
| 89 |
gr.Markdown("Select the prediction model.")
|
| 90 |
gr.Markdown(
|
| 91 |
+
"CELL-E_2_HPA_480 is a good general purpose model for various cell types using ICC-IF."
|
| 92 |
)
|
| 93 |
gr.Markdown(
|
| 94 |
+
"CELL-E_2_HPA_Finetuned_480 is finetuned on OpenCell and is good more live-cell predictions on HEK cells."
|
| 95 |
)
|
| 96 |
with gr.Row():
|
| 97 |
model_name = gr.Dropdown(
|
| 98 |
+
["CELL-E_2_HPA_480", "CELL-E_2_HPA_Finetuned_480"],
|
| 99 |
+
value="CELL-E_2_HPA_480",
|
| 100 |
label="Model Name",
|
| 101 |
)
|
| 102 |
with gr.Row():
|
| 103 |
gr.Markdown(
|
| 104 |
+
"Input the desired amino acid sequence. GFP is shown below by default."
|
| 105 |
)
|
| 106 |
|
| 107 |
with gr.Row():
|
| 108 |
sequence_input = gr.Textbox(
|
| 109 |
+
value="MSKGEELFTGVVPILVELDGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPVPWPTLVTTFSYGVQCFSRYPDHMKQHDFFKSAMPEGYVQERTIFFKDDGNYKTRAEVKFEGDTLVNRIELKGIDFKEDGNILGHKLEYNYNSHNVYIMADKQKNGIKVNFKIRHNIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMVLLEFVTAAGITHGMDELYK",
|
| 110 |
label="Sequence",
|
| 111 |
)
|
| 112 |
with gr.Row():
|
| 113 |
gr.Markdown(
|
| 114 |
+
"Uploading a nucleus image is necessary. A random crop of 256 x 256 will be applied if larger. We provide default images in [images](https://huggingface.co/spaces/HuangLab/CELL-E_2/tree/main/images)"
|
| 115 |
)
|
| 116 |
+
gr.Markdown("The protein image is optional and is just used for display.")
|
| 117 |
|
| 118 |
with gr.Row().style(equal_height=True):
|
| 119 |
nucleus_image = gr.Image(
|
| 120 |
+
type="pil",
|
| 121 |
+
label="Nucleus Image",
|
|
|
|
|
|
|
|
|
|
| 122 |
image_mode="L",
|
|
|
|
| 123 |
)
|
| 124 |
|
| 125 |
+
protein_image = gr.Image(type="pil", label="Protein Image (Optional)")
|
| 126 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 127 |
with gr.Row():
|
| 128 |
+
gr.Markdown("Image predictions are show below.")
|
| 129 |
|
| 130 |
with gr.Row().style(equal_height=True):
|
| 131 |
+
nucleus_image_crop = gr.Image(type="pil", label="Nucleus Image", image_mode="L")
|
| 132 |
+
|
| 133 |
+
protein_threshold_image = gr.Image(
|
| 134 |
+
type="pil", label="Protein Threshold Image", image_mode="L"
|
| 135 |
+
)
|
| 136 |
|
| 137 |
+
predicted_threshold_image = gr.Image(
|
| 138 |
+
type="pil", label="Predicted Threshold image", image_mode="L"
|
| 139 |
+
)
|
| 140 |
|
| 141 |
+
predicted_heatmap = gr.Image(type="pil", label="Predicted Heatmap")
|
| 142 |
with gr.Row():
|
| 143 |
button = gr.Button("Run Model")
|
| 144 |
|
| 145 |
+
inputs = [model_name, sequence_input, nucleus_image, protein_image]
|
| 146 |
|
| 147 |
+
outputs = [
|
| 148 |
+
nucleus_image_crop,
|
| 149 |
+
protein_threshold_image,
|
| 150 |
+
predicted_threshold_image,
|
| 151 |
+
predicted_heatmap,
|
| 152 |
+
]
|
| 153 |
|
| 154 |
+
button.click(base_class.gradio_demo, inputs, outputs)
|
| 155 |
|
| 156 |
+
demo.launch(enable_queue=True)
|