Update app.py
Browse files
app.py
CHANGED
|
@@ -32,6 +32,26 @@ def bold_predicted_letters(input_string: str, output_string: str) -> str:
|
|
| 32 |
|
| 33 |
return "".join(result)
|
| 34 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
class model:
|
| 36 |
def __init__(self):
|
| 37 |
self.model = None
|
|
@@ -105,7 +125,8 @@ class model:
|
|
| 105 |
formatted_predicted_sequence = formatted_predicted_sequence.replace("<cls>","")
|
| 106 |
formatted_predicted_sequence = formatted_predicted_sequence.replace("<eos>","")
|
| 107 |
|
| 108 |
-
formatted_predicted_sequence = bold_predicted_letters(sequence_input, formatted_predicted_sequence)
|
|
|
|
| 109 |
return T.ToPILImage()(protein_image[0,0]), T.ToPILImage()(nucleus_image[0,0]), formatted_predicted_sequence
|
| 110 |
|
| 111 |
base_class = model()
|
|
@@ -169,7 +190,11 @@ with gr.Blocks(theme='gradio/soft') as demo:
|
|
| 169 |
gr.Markdown("Sequence predictions are show below.")
|
| 170 |
|
| 171 |
with gr.Row().style(equal_height=True):
|
| 172 |
-
predicted_sequence = gr.Markdown(label='Predicted Sequence')
|
|
|
|
|
|
|
|
|
|
|
|
|
| 173 |
|
| 174 |
|
| 175 |
with gr.Row():
|
|
|
|
| 32 |
|
| 33 |
return "".join(result)
|
| 34 |
|
| 35 |
+
def diff_texts(string):
|
| 36 |
+
new_string = []
|
| 37 |
+
|
| 38 |
+
bold = False
|
| 39 |
+
|
| 40 |
+
for idx, letter in enumerate(string):
|
| 41 |
+
|
| 42 |
+
if letter == '*' and string[min(idx + 1, len(string)-1)] == '*' and bold == False:
|
| 43 |
+
bold = True
|
| 44 |
+
|
| 45 |
+
elif letter == '*' and string[min(idx + 1, len(string)-1)] == '*' and bold == True:
|
| 46 |
+
bold = False
|
| 47 |
+
if letter != '*':
|
| 48 |
+
if bold :
|
| 49 |
+
new_string.append((letter,'+'))
|
| 50 |
+
else:
|
| 51 |
+
new_string.append((letter, None))
|
| 52 |
+
|
| 53 |
+
return new_string
|
| 54 |
+
|
| 55 |
class model:
|
| 56 |
def __init__(self):
|
| 57 |
self.model = None
|
|
|
|
| 125 |
formatted_predicted_sequence = formatted_predicted_sequence.replace("<cls>","")
|
| 126 |
formatted_predicted_sequence = formatted_predicted_sequence.replace("<eos>","")
|
| 127 |
|
| 128 |
+
formatted_predicted_sequence = bold_predicted_letters(sequence_input, formatted_predicted_sequence)
|
| 129 |
+
formatted_predicted_sequence = diff_texts(formatted_predicted_sequence)
|
| 130 |
return T.ToPILImage()(protein_image[0,0]), T.ToPILImage()(nucleus_image[0,0]), formatted_predicted_sequence
|
| 131 |
|
| 132 |
base_class = model()
|
|
|
|
| 190 |
gr.Markdown("Sequence predictions are show below.")
|
| 191 |
|
| 192 |
with gr.Row().style(equal_height=True):
|
| 193 |
+
# predicted_sequence = gr.Markdown(label='Predicted Sequence')
|
| 194 |
+
predicted_sequence = gr.HighlightedText(
|
| 195 |
+
label="Predicted Sequence",
|
| 196 |
+
combine_adjacent=True,
|
| 197 |
+
show_legend=False).style(color_map={"+": "green"})
|
| 198 |
|
| 199 |
|
| 200 |
with gr.Row():
|