clipyr / app.py
Gresekxnol's picture
Create app.py
04536c6 verified
raw
history blame
17.4 kB
import gradio as gr
import whisper
import cv2
import numpy as np
import moviepy.editor as mp
from moviepy.video.fx import resize
from transformers import pipeline, AutoTokenizer, AutoModel
import torch
import re
import os
import tempfile
from typing import List, Dict, Tuple
import json
import librosa
from textblob import TextBlob
import emoji
class AIVideoClipper:
def __init__(self):
# Initialize models
print("Loading models...")
self.whisper_model = whisper.load_model("base") # Using base model for free tier
self.sentiment_analyzer = pipeline("sentiment-analysis",
model="cardiffnlp/twitter-roberta-base-sentiment-latest")
self.emotion_analyzer = pipeline("text-classification",
model="j-hartmann/emotion-english-distilroberta-base")
# Viral keywords and patterns
self.viral_keywords = [
"wow", "amazing", "incredible", "unbelievable", "shocking", "surprise",
"secret", "trick", "hack", "tip", "mistake", "fail", "success",
"breakthrough", "discovery", "reveal", "expose", "truth", "lie",
"before", "after", "transformation", "change", "upgrade", "improve",
"money", "rich", "poor", "expensive", "cheap", "free", "save",
"love", "hate", "angry", "happy", "sad", "funny", "laugh", "cry",
"first time", "last time", "never", "always", "everyone", "nobody",
"finally", "suddenly", "immediately", "instantly", "quickly"
]
self.hook_patterns = [
r"you won't believe",
r"this will change",
r"nobody talks about",
r"the truth about",
r"what happens when",
r"here's what",
r"this is why",
r"the secret",
r"watch this",
r"wait for it"
]
def extract_audio_features(self, audio_path: str) -> Dict:
"""Extract audio features for engagement analysis"""
y, sr = librosa.load(audio_path)
# Extract features
tempo, _ = librosa.beat.beat_track(y=y, sr=sr)
spectral_centroids = librosa.feature.spectral_centroid(y=y, sr=sr)[0]
spectral_rolloff = librosa.feature.spectral_rolloff(y=y, sr=sr)[0]
mfccs = librosa.feature.mfcc(y=y, sr=sr, n_mfcc=13)
return {
'tempo': float(tempo),
'spectral_centroid_mean': float(np.mean(spectral_centroids)),
'spectral_rolloff_mean': float(np.mean(spectral_rolloff)),
'mfcc_mean': float(np.mean(mfccs)),
'energy_variance': float(np.var(librosa.feature.rms(y=y)[0]))
}
def transcribe_video(self, video_path: str) -> List[Dict]:
"""Transcribe video and return segments with timestamps"""
print("Transcribing video...")
result = self.whisper_model.transcribe(video_path, word_timestamps=True)
segments = []
for segment in result["segments"]:
segments.append({
'start': segment['start'],
'end': segment['end'],
'text': segment['text'].strip(),
'words': segment.get('words', [])
})
return segments
def calculate_virality_score(self, text: str, audio_features: Dict,
segment_duration: float) -> float:
"""Calculate virality score for a text segment"""
score = 0.0
text_lower = text.lower()
# Sentiment analysis
sentiment = self.sentiment_analyzer(text)[0]
if sentiment['label'] == 'POSITIVE' and sentiment['score'] > 0.8:
score += 2.0
elif sentiment['label'] == 'NEGATIVE' and sentiment['score'] > 0.8:
score += 1.5
# Emotion analysis
emotion = self.emotion_analyzer(text)[0]
high_engagement_emotions = ['surprise', 'excitement', 'anger', 'joy']
if emotion['label'].lower() in high_engagement_emotions and emotion['score'] > 0.7:
score += 2.0
# Viral keywords
for keyword in self.viral_keywords:
if keyword in text_lower:
score += 1.0
# Hook patterns
for pattern in self.hook_patterns:
if re.search(pattern, text_lower):
score += 3.0
# Audio engagement features
if audio_features['tempo'] > 120: # Higher tempo = more engaging
score += 1.0
if audio_features['energy_variance'] > 0.01: # Energy variation
score += 1.0
# Segment duration (30-60 seconds ideal for clips)
if 25 <= segment_duration <= 65:
score += 2.0
elif 15 <= segment_duration <= 90:
score += 1.0
# Text length (not too short, not too long)
word_count = len(text.split())
if 20 <= word_count <= 100:
score += 1.0
return min(score, 10.0) # Cap at 10
def find_best_moments(self, segments: List[Dict], audio_features: Dict,
clip_duration: int = 30) -> List[Dict]:
"""Find the best moments for short clips"""
print("Analyzing segments for viral potential...")
scored_segments = []
for i, segment in enumerate(segments):
# Group segments into potential clips
clip_segments = [segment]
current_duration = segment['end'] - segment['start']
# Extend clip to reach desired duration
j = i + 1
while j < len(segments) and current_duration < clip_duration:
next_segment = segments[j]
if next_segment['end'] - segment['start'] <= clip_duration * 1.5:
clip_segments.append(next_segment)
current_duration = next_segment['end'] - segment['start']
j += 1
else:
break
# Calculate combined text and virality score
combined_text = " ".join([s['text'] for s in clip_segments])
virality_score = self.calculate_virality_score(
combined_text, audio_features, current_duration
)
scored_segments.append({
'start': segment['start'],
'end': clip_segments[-1]['end'],
'text': combined_text,
'duration': current_duration,
'virality_score': virality_score,
'segments': clip_segments
})
# Sort by virality score and remove overlaps
scored_segments.sort(key=lambda x: x['virality_score'], reverse=True)
# Remove overlapping segments
final_segments = []
for segment in scored_segments:
overlap = False
for existing in final_segments:
if (segment['start'] < existing['end'] and
segment['end'] > existing['start']):
overlap = True
break
if not overlap:
final_segments.append(segment)
if len(final_segments) >= 5: # Limit to top 5 clips
break
return final_segments
def add_emojis_to_text(self, text: str) -> str:
"""Add relevant emojis to text based on content"""
emoji_map = {
'money': 'πŸ’°', 'rich': 'πŸ’°', 'dollar': 'πŸ’΅',
'love': '❀️', 'heart': '❀️', 'like': 'πŸ‘',
'fire': 'πŸ”₯', 'hot': 'πŸ”₯', 'amazing': 'πŸ”₯',
'laugh': 'πŸ˜‚', 'funny': 'πŸ˜‚', 'lol': 'πŸ˜‚',
'wow': '😱', 'omg': '😱', 'shocking': '😱',
'cool': '😎', 'awesome': '😎', 'great': '😎',
'think': 'πŸ€”', 'question': '❓', 'why': 'πŸ€”',
'warning': '⚠️', 'careful': '⚠️', 'danger': '⚠️',
'success': 'βœ…', 'win': 'πŸ†', 'winner': 'πŸ†',
'music': '🎡', 'song': '🎡', 'sound': 'πŸ”Š'
}
words = text.lower().split()
for word in words:
clean_word = re.sub(r'[^\w]', '', word)
if clean_word in emoji_map:
text = re.sub(f"\\b{re.escape(word)}\\b",
f"{word} {emoji_map[clean_word]}", text, flags=re.IGNORECASE)
return text
def create_clip(self, video_path: str, start_time: float, end_time: float,
text: str, output_path: str, add_subtitles: bool = True) -> str:
"""Create a short clip from the video"""
print(f"Creating clip: {start_time:.1f}s - {end_time:.1f}s")
# Load video
video = mp.VideoFileClip(video_path).subclip(start_time, end_time)
# Resize to 9:16 aspect ratio (1080x1920)
target_width = 1080
target_height = 1920
# Calculate scaling to fit the video in the frame
scale_w = target_width / video.w
scale_h = target_height / video.h
scale = min(scale_w, scale_h)
# Resize video
video_resized = video.resize(scale)
# Create background (blur or solid color)
if video_resized.h < target_height or video_resized.w < target_width:
# Create blurred background
background = video.resize((target_width, target_height))
background = background.fl_image(lambda frame: cv2.GaussianBlur(frame, (21, 21), 0))
# Overlay the main video in center
final_video = mp.CompositeVideoClip([
background,
video_resized.set_position('center')
], size=(target_width, target_height))
else:
final_video = video_resized
# Add subtitles if requested
if add_subtitles and text:
# Add emojis to text
text_with_emojis = self.add_emojis_to_text(text)
# Create text clip
txt_clip = mp.TextClip(
text_with_emojis,
fontsize=60,
color='white',
stroke_color='black',
stroke_width=3,
size=(target_width - 100, None),
method='caption'
).set_position(('center', 0.8), relative=True).set_duration(final_video.duration)
final_video = mp.CompositeVideoClip([final_video, txt_clip])
# Write the final video
final_video.write_videofile(
output_path,
codec='libx264',
audio_codec='aac',
temp_audiofile='temp-audio.m4a',
remove_temp=True,
fps=30,
preset='ultrafast' # Faster encoding for free tier
)
# Clean up
video.close()
final_video.close()
return output_path
def process_video(video_file, clip_duration, num_clips, add_subtitles):
"""Main function to process video and create clips"""
if video_file is None:
return "Please upload a video file.", [], []
clipper = AIVideoClipper()
try:
# Create temporary directory
with tempfile.TemporaryDirectory() as temp_dir:
video_path = video_file.name
# Extract audio features
print("Extracting audio features...")
audio_features = clipper.extract_audio_features(video_path)
# Transcribe video
segments = clipper.transcribe_video(video_path)
if not segments:
return "Could not transcribe video. Please check the audio quality.", [], []
# Find best moments
best_moments = clipper.find_best_moments(segments, audio_features, clip_duration)
best_moments = best_moments[:num_clips] # Limit to requested number
if not best_moments:
return "No suitable clips found. Try adjusting parameters.", [], []
# Create clips
output_videos = []
clip_info = []
for i, moment in enumerate(best_moments):
output_path = os.path.join(temp_dir, f"clip_{i+1}.mp4")
try:
clipper.create_clip(
video_path,
moment['start'],
moment['end'],
moment['text'],
output_path,
add_subtitles
)
# Copy to permanent location
permanent_path = f"clip_{i+1}_{hash(video_path)}_{i}.mp4"
os.rename(output_path, permanent_path)
output_videos.append(permanent_path)
clip_info.append({
'clip_number': i + 1,
'start_time': f"{moment['start']:.1f}s",
'end_time': f"{moment['end']:.1f}s",
'duration': f"{moment['duration']:.1f}s",
'virality_score': f"{moment['virality_score']:.2f}/10",
'text_preview': moment['text'][:100] + "..." if len(moment['text']) > 100 else moment['text']
})
except Exception as e:
print(f"Error creating clip {i+1}: {str(e)}")
continue
success_msg = f"Successfully created {len(output_videos)} clips!"
return success_msg, output_videos, clip_info
except Exception as e:
return f"Error processing video: {str(e)}", [], []
# Create Gradio interface
def create_interface():
with gr.Blocks(title="AI Video Clipper", theme=gr.themes.Soft()) as demo:
gr.Markdown(
"""
# 🎬 AI Video Clipper
Transform your long videos into viral short clips automatically!
Upload your video and let AI find the most engaging moments.
**Features:**
- πŸ€– AI-powered moment detection
- πŸ“± Auto 9:16 aspect ratio conversion
- πŸ“ Automatic subtitles with emojis
- πŸ“Š Virality scoring
- 🎯 Multi-language support
"""
)
with gr.Row():
with gr.Column():
video_input = gr.File(
label="Upload Video",
file_types=[".mp4", ".avi", ".mov", ".mkv", ".webm"],
type="filepath"
)
with gr.Row():
clip_duration = gr.Slider(
minimum=15,
maximum=90,
value=30,
step=5,
label="Target Clip Duration (seconds)"
)
num_clips = gr.Slider(
minimum=1,
maximum=5,
value=3,
step=1,
label="Number of Clips to Generate"
)
add_subtitles = gr.Checkbox(
label="Add Subtitles with Emojis",
value=True
)
process_btn = gr.Button(
"πŸš€ Create Clips",
variant="primary",
size="lg"
)
with gr.Column():
status_output = gr.Textbox(
label="Status",
interactive=False,
lines=2
)
clips_output = gr.Gallery(
label="Generated Clips",
show_label=True,
elem_id="gallery",
columns=1,
rows=3,
height="auto",
allow_preview=True,
show_download_button=True
)
with gr.Row():
info_output = gr.JSON(
label="Clip Analysis",
visible=True
)
# Example videos section
gr.Markdown("### πŸ“Ί Tips for Best Results:")
gr.Markdown("""
- Upload videos with clear speech (podcasts, interviews, tutorials work great!)
- Longer videos (5+ minutes) provide more clip opportunities
- Videos with engaging content and emotional moments score higher
- Good audio quality improves transcription accuracy
""")
process_btn.click(
process_video,
inputs=[video_input, clip_duration, num_clips, add_subtitles],
outputs=[status_output, clips_output, info_output]
)
return demo
# Launch the app
if __name__ == "__main__":
demo = create_interface()
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=False
)