Spaces:
Running
Running
File size: 17,441 Bytes
04536c6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 |
import gradio as gr
import whisper
import cv2
import numpy as np
import moviepy.editor as mp
from moviepy.video.fx import resize
from transformers import pipeline, AutoTokenizer, AutoModel
import torch
import re
import os
import tempfile
from typing import List, Dict, Tuple
import json
import librosa
from textblob import TextBlob
import emoji
class AIVideoClipper:
def __init__(self):
# Initialize models
print("Loading models...")
self.whisper_model = whisper.load_model("base") # Using base model for free tier
self.sentiment_analyzer = pipeline("sentiment-analysis",
model="cardiffnlp/twitter-roberta-base-sentiment-latest")
self.emotion_analyzer = pipeline("text-classification",
model="j-hartmann/emotion-english-distilroberta-base")
# Viral keywords and patterns
self.viral_keywords = [
"wow", "amazing", "incredible", "unbelievable", "shocking", "surprise",
"secret", "trick", "hack", "tip", "mistake", "fail", "success",
"breakthrough", "discovery", "reveal", "expose", "truth", "lie",
"before", "after", "transformation", "change", "upgrade", "improve",
"money", "rich", "poor", "expensive", "cheap", "free", "save",
"love", "hate", "angry", "happy", "sad", "funny", "laugh", "cry",
"first time", "last time", "never", "always", "everyone", "nobody",
"finally", "suddenly", "immediately", "instantly", "quickly"
]
self.hook_patterns = [
r"you won't believe",
r"this will change",
r"nobody talks about",
r"the truth about",
r"what happens when",
r"here's what",
r"this is why",
r"the secret",
r"watch this",
r"wait for it"
]
def extract_audio_features(self, audio_path: str) -> Dict:
"""Extract audio features for engagement analysis"""
y, sr = librosa.load(audio_path)
# Extract features
tempo, _ = librosa.beat.beat_track(y=y, sr=sr)
spectral_centroids = librosa.feature.spectral_centroid(y=y, sr=sr)[0]
spectral_rolloff = librosa.feature.spectral_rolloff(y=y, sr=sr)[0]
mfccs = librosa.feature.mfcc(y=y, sr=sr, n_mfcc=13)
return {
'tempo': float(tempo),
'spectral_centroid_mean': float(np.mean(spectral_centroids)),
'spectral_rolloff_mean': float(np.mean(spectral_rolloff)),
'mfcc_mean': float(np.mean(mfccs)),
'energy_variance': float(np.var(librosa.feature.rms(y=y)[0]))
}
def transcribe_video(self, video_path: str) -> List[Dict]:
"""Transcribe video and return segments with timestamps"""
print("Transcribing video...")
result = self.whisper_model.transcribe(video_path, word_timestamps=True)
segments = []
for segment in result["segments"]:
segments.append({
'start': segment['start'],
'end': segment['end'],
'text': segment['text'].strip(),
'words': segment.get('words', [])
})
return segments
def calculate_virality_score(self, text: str, audio_features: Dict,
segment_duration: float) -> float:
"""Calculate virality score for a text segment"""
score = 0.0
text_lower = text.lower()
# Sentiment analysis
sentiment = self.sentiment_analyzer(text)[0]
if sentiment['label'] == 'POSITIVE' and sentiment['score'] > 0.8:
score += 2.0
elif sentiment['label'] == 'NEGATIVE' and sentiment['score'] > 0.8:
score += 1.5
# Emotion analysis
emotion = self.emotion_analyzer(text)[0]
high_engagement_emotions = ['surprise', 'excitement', 'anger', 'joy']
if emotion['label'].lower() in high_engagement_emotions and emotion['score'] > 0.7:
score += 2.0
# Viral keywords
for keyword in self.viral_keywords:
if keyword in text_lower:
score += 1.0
# Hook patterns
for pattern in self.hook_patterns:
if re.search(pattern, text_lower):
score += 3.0
# Audio engagement features
if audio_features['tempo'] > 120: # Higher tempo = more engaging
score += 1.0
if audio_features['energy_variance'] > 0.01: # Energy variation
score += 1.0
# Segment duration (30-60 seconds ideal for clips)
if 25 <= segment_duration <= 65:
score += 2.0
elif 15 <= segment_duration <= 90:
score += 1.0
# Text length (not too short, not too long)
word_count = len(text.split())
if 20 <= word_count <= 100:
score += 1.0
return min(score, 10.0) # Cap at 10
def find_best_moments(self, segments: List[Dict], audio_features: Dict,
clip_duration: int = 30) -> List[Dict]:
"""Find the best moments for short clips"""
print("Analyzing segments for viral potential...")
scored_segments = []
for i, segment in enumerate(segments):
# Group segments into potential clips
clip_segments = [segment]
current_duration = segment['end'] - segment['start']
# Extend clip to reach desired duration
j = i + 1
while j < len(segments) and current_duration < clip_duration:
next_segment = segments[j]
if next_segment['end'] - segment['start'] <= clip_duration * 1.5:
clip_segments.append(next_segment)
current_duration = next_segment['end'] - segment['start']
j += 1
else:
break
# Calculate combined text and virality score
combined_text = " ".join([s['text'] for s in clip_segments])
virality_score = self.calculate_virality_score(
combined_text, audio_features, current_duration
)
scored_segments.append({
'start': segment['start'],
'end': clip_segments[-1]['end'],
'text': combined_text,
'duration': current_duration,
'virality_score': virality_score,
'segments': clip_segments
})
# Sort by virality score and remove overlaps
scored_segments.sort(key=lambda x: x['virality_score'], reverse=True)
# Remove overlapping segments
final_segments = []
for segment in scored_segments:
overlap = False
for existing in final_segments:
if (segment['start'] < existing['end'] and
segment['end'] > existing['start']):
overlap = True
break
if not overlap:
final_segments.append(segment)
if len(final_segments) >= 5: # Limit to top 5 clips
break
return final_segments
def add_emojis_to_text(self, text: str) -> str:
"""Add relevant emojis to text based on content"""
emoji_map = {
'money': 'π°', 'rich': 'π°', 'dollar': 'π΅',
'love': 'β€οΈ', 'heart': 'β€οΈ', 'like': 'π',
'fire': 'π₯', 'hot': 'π₯', 'amazing': 'π₯',
'laugh': 'π', 'funny': 'π', 'lol': 'π',
'wow': 'π±', 'omg': 'π±', 'shocking': 'π±',
'cool': 'π', 'awesome': 'π', 'great': 'π',
'think': 'π€', 'question': 'β', 'why': 'π€',
'warning': 'β οΈ', 'careful': 'β οΈ', 'danger': 'β οΈ',
'success': 'β
', 'win': 'π', 'winner': 'π',
'music': 'π΅', 'song': 'π΅', 'sound': 'π'
}
words = text.lower().split()
for word in words:
clean_word = re.sub(r'[^\w]', '', word)
if clean_word in emoji_map:
text = re.sub(f"\\b{re.escape(word)}\\b",
f"{word} {emoji_map[clean_word]}", text, flags=re.IGNORECASE)
return text
def create_clip(self, video_path: str, start_time: float, end_time: float,
text: str, output_path: str, add_subtitles: bool = True) -> str:
"""Create a short clip from the video"""
print(f"Creating clip: {start_time:.1f}s - {end_time:.1f}s")
# Load video
video = mp.VideoFileClip(video_path).subclip(start_time, end_time)
# Resize to 9:16 aspect ratio (1080x1920)
target_width = 1080
target_height = 1920
# Calculate scaling to fit the video in the frame
scale_w = target_width / video.w
scale_h = target_height / video.h
scale = min(scale_w, scale_h)
# Resize video
video_resized = video.resize(scale)
# Create background (blur or solid color)
if video_resized.h < target_height or video_resized.w < target_width:
# Create blurred background
background = video.resize((target_width, target_height))
background = background.fl_image(lambda frame: cv2.GaussianBlur(frame, (21, 21), 0))
# Overlay the main video in center
final_video = mp.CompositeVideoClip([
background,
video_resized.set_position('center')
], size=(target_width, target_height))
else:
final_video = video_resized
# Add subtitles if requested
if add_subtitles and text:
# Add emojis to text
text_with_emojis = self.add_emojis_to_text(text)
# Create text clip
txt_clip = mp.TextClip(
text_with_emojis,
fontsize=60,
color='white',
stroke_color='black',
stroke_width=3,
size=(target_width - 100, None),
method='caption'
).set_position(('center', 0.8), relative=True).set_duration(final_video.duration)
final_video = mp.CompositeVideoClip([final_video, txt_clip])
# Write the final video
final_video.write_videofile(
output_path,
codec='libx264',
audio_codec='aac',
temp_audiofile='temp-audio.m4a',
remove_temp=True,
fps=30,
preset='ultrafast' # Faster encoding for free tier
)
# Clean up
video.close()
final_video.close()
return output_path
def process_video(video_file, clip_duration, num_clips, add_subtitles):
"""Main function to process video and create clips"""
if video_file is None:
return "Please upload a video file.", [], []
clipper = AIVideoClipper()
try:
# Create temporary directory
with tempfile.TemporaryDirectory() as temp_dir:
video_path = video_file.name
# Extract audio features
print("Extracting audio features...")
audio_features = clipper.extract_audio_features(video_path)
# Transcribe video
segments = clipper.transcribe_video(video_path)
if not segments:
return "Could not transcribe video. Please check the audio quality.", [], []
# Find best moments
best_moments = clipper.find_best_moments(segments, audio_features, clip_duration)
best_moments = best_moments[:num_clips] # Limit to requested number
if not best_moments:
return "No suitable clips found. Try adjusting parameters.", [], []
# Create clips
output_videos = []
clip_info = []
for i, moment in enumerate(best_moments):
output_path = os.path.join(temp_dir, f"clip_{i+1}.mp4")
try:
clipper.create_clip(
video_path,
moment['start'],
moment['end'],
moment['text'],
output_path,
add_subtitles
)
# Copy to permanent location
permanent_path = f"clip_{i+1}_{hash(video_path)}_{i}.mp4"
os.rename(output_path, permanent_path)
output_videos.append(permanent_path)
clip_info.append({
'clip_number': i + 1,
'start_time': f"{moment['start']:.1f}s",
'end_time': f"{moment['end']:.1f}s",
'duration': f"{moment['duration']:.1f}s",
'virality_score': f"{moment['virality_score']:.2f}/10",
'text_preview': moment['text'][:100] + "..." if len(moment['text']) > 100 else moment['text']
})
except Exception as e:
print(f"Error creating clip {i+1}: {str(e)}")
continue
success_msg = f"Successfully created {len(output_videos)} clips!"
return success_msg, output_videos, clip_info
except Exception as e:
return f"Error processing video: {str(e)}", [], []
# Create Gradio interface
def create_interface():
with gr.Blocks(title="AI Video Clipper", theme=gr.themes.Soft()) as demo:
gr.Markdown(
"""
# π¬ AI Video Clipper
Transform your long videos into viral short clips automatically!
Upload your video and let AI find the most engaging moments.
**Features:**
- π€ AI-powered moment detection
- π± Auto 9:16 aspect ratio conversion
- π Automatic subtitles with emojis
- π Virality scoring
- π― Multi-language support
"""
)
with gr.Row():
with gr.Column():
video_input = gr.File(
label="Upload Video",
file_types=[".mp4", ".avi", ".mov", ".mkv", ".webm"],
type="filepath"
)
with gr.Row():
clip_duration = gr.Slider(
minimum=15,
maximum=90,
value=30,
step=5,
label="Target Clip Duration (seconds)"
)
num_clips = gr.Slider(
minimum=1,
maximum=5,
value=3,
step=1,
label="Number of Clips to Generate"
)
add_subtitles = gr.Checkbox(
label="Add Subtitles with Emojis",
value=True
)
process_btn = gr.Button(
"π Create Clips",
variant="primary",
size="lg"
)
with gr.Column():
status_output = gr.Textbox(
label="Status",
interactive=False,
lines=2
)
clips_output = gr.Gallery(
label="Generated Clips",
show_label=True,
elem_id="gallery",
columns=1,
rows=3,
height="auto",
allow_preview=True,
show_download_button=True
)
with gr.Row():
info_output = gr.JSON(
label="Clip Analysis",
visible=True
)
# Example videos section
gr.Markdown("### πΊ Tips for Best Results:")
gr.Markdown("""
- Upload videos with clear speech (podcasts, interviews, tutorials work great!)
- Longer videos (5+ minutes) provide more clip opportunities
- Videos with engaging content and emotional moments score higher
- Good audio quality improves transcription accuracy
""")
process_btn.click(
process_video,
inputs=[video_input, clip_duration, num_clips, add_subtitles],
outputs=[status_output, clips_output, info_output]
)
return demo
# Launch the app
if __name__ == "__main__":
demo = create_interface()
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=False
) |