Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,457 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import whisper
|
3 |
+
import cv2
|
4 |
+
import numpy as np
|
5 |
+
import moviepy.editor as mp
|
6 |
+
from moviepy.video.fx import resize
|
7 |
+
from transformers import pipeline, AutoTokenizer, AutoModel
|
8 |
+
import torch
|
9 |
+
import re
|
10 |
+
import os
|
11 |
+
import tempfile
|
12 |
+
from typing import List, Dict, Tuple
|
13 |
+
import json
|
14 |
+
import librosa
|
15 |
+
from textblob import TextBlob
|
16 |
+
import emoji
|
17 |
+
|
18 |
+
class AIVideoClipper:
|
19 |
+
def __init__(self):
|
20 |
+
# Initialize models
|
21 |
+
print("Loading models...")
|
22 |
+
self.whisper_model = whisper.load_model("base") # Using base model for free tier
|
23 |
+
self.sentiment_analyzer = pipeline("sentiment-analysis",
|
24 |
+
model="cardiffnlp/twitter-roberta-base-sentiment-latest")
|
25 |
+
self.emotion_analyzer = pipeline("text-classification",
|
26 |
+
model="j-hartmann/emotion-english-distilroberta-base")
|
27 |
+
|
28 |
+
# Viral keywords and patterns
|
29 |
+
self.viral_keywords = [
|
30 |
+
"wow", "amazing", "incredible", "unbelievable", "shocking", "surprise",
|
31 |
+
"secret", "trick", "hack", "tip", "mistake", "fail", "success",
|
32 |
+
"breakthrough", "discovery", "reveal", "expose", "truth", "lie",
|
33 |
+
"before", "after", "transformation", "change", "upgrade", "improve",
|
34 |
+
"money", "rich", "poor", "expensive", "cheap", "free", "save",
|
35 |
+
"love", "hate", "angry", "happy", "sad", "funny", "laugh", "cry",
|
36 |
+
"first time", "last time", "never", "always", "everyone", "nobody",
|
37 |
+
"finally", "suddenly", "immediately", "instantly", "quickly"
|
38 |
+
]
|
39 |
+
|
40 |
+
self.hook_patterns = [
|
41 |
+
r"you won't believe",
|
42 |
+
r"this will change",
|
43 |
+
r"nobody talks about",
|
44 |
+
r"the truth about",
|
45 |
+
r"what happens when",
|
46 |
+
r"here's what",
|
47 |
+
r"this is why",
|
48 |
+
r"the secret",
|
49 |
+
r"watch this",
|
50 |
+
r"wait for it"
|
51 |
+
]
|
52 |
+
|
53 |
+
def extract_audio_features(self, audio_path: str) -> Dict:
|
54 |
+
"""Extract audio features for engagement analysis"""
|
55 |
+
y, sr = librosa.load(audio_path)
|
56 |
+
|
57 |
+
# Extract features
|
58 |
+
tempo, _ = librosa.beat.beat_track(y=y, sr=sr)
|
59 |
+
spectral_centroids = librosa.feature.spectral_centroid(y=y, sr=sr)[0]
|
60 |
+
spectral_rolloff = librosa.feature.spectral_rolloff(y=y, sr=sr)[0]
|
61 |
+
mfccs = librosa.feature.mfcc(y=y, sr=sr, n_mfcc=13)
|
62 |
+
|
63 |
+
return {
|
64 |
+
'tempo': float(tempo),
|
65 |
+
'spectral_centroid_mean': float(np.mean(spectral_centroids)),
|
66 |
+
'spectral_rolloff_mean': float(np.mean(spectral_rolloff)),
|
67 |
+
'mfcc_mean': float(np.mean(mfccs)),
|
68 |
+
'energy_variance': float(np.var(librosa.feature.rms(y=y)[0]))
|
69 |
+
}
|
70 |
+
|
71 |
+
def transcribe_video(self, video_path: str) -> List[Dict]:
|
72 |
+
"""Transcribe video and return segments with timestamps"""
|
73 |
+
print("Transcribing video...")
|
74 |
+
result = self.whisper_model.transcribe(video_path, word_timestamps=True)
|
75 |
+
|
76 |
+
segments = []
|
77 |
+
for segment in result["segments"]:
|
78 |
+
segments.append({
|
79 |
+
'start': segment['start'],
|
80 |
+
'end': segment['end'],
|
81 |
+
'text': segment['text'].strip(),
|
82 |
+
'words': segment.get('words', [])
|
83 |
+
})
|
84 |
+
|
85 |
+
return segments
|
86 |
+
|
87 |
+
def calculate_virality_score(self, text: str, audio_features: Dict,
|
88 |
+
segment_duration: float) -> float:
|
89 |
+
"""Calculate virality score for a text segment"""
|
90 |
+
score = 0.0
|
91 |
+
text_lower = text.lower()
|
92 |
+
|
93 |
+
# Sentiment analysis
|
94 |
+
sentiment = self.sentiment_analyzer(text)[0]
|
95 |
+
if sentiment['label'] == 'POSITIVE' and sentiment['score'] > 0.8:
|
96 |
+
score += 2.0
|
97 |
+
elif sentiment['label'] == 'NEGATIVE' and sentiment['score'] > 0.8:
|
98 |
+
score += 1.5
|
99 |
+
|
100 |
+
# Emotion analysis
|
101 |
+
emotion = self.emotion_analyzer(text)[0]
|
102 |
+
high_engagement_emotions = ['surprise', 'excitement', 'anger', 'joy']
|
103 |
+
if emotion['label'].lower() in high_engagement_emotions and emotion['score'] > 0.7:
|
104 |
+
score += 2.0
|
105 |
+
|
106 |
+
# Viral keywords
|
107 |
+
for keyword in self.viral_keywords:
|
108 |
+
if keyword in text_lower:
|
109 |
+
score += 1.0
|
110 |
+
|
111 |
+
# Hook patterns
|
112 |
+
for pattern in self.hook_patterns:
|
113 |
+
if re.search(pattern, text_lower):
|
114 |
+
score += 3.0
|
115 |
+
|
116 |
+
# Audio engagement features
|
117 |
+
if audio_features['tempo'] > 120: # Higher tempo = more engaging
|
118 |
+
score += 1.0
|
119 |
+
if audio_features['energy_variance'] > 0.01: # Energy variation
|
120 |
+
score += 1.0
|
121 |
+
|
122 |
+
# Segment duration (30-60 seconds ideal for clips)
|
123 |
+
if 25 <= segment_duration <= 65:
|
124 |
+
score += 2.0
|
125 |
+
elif 15 <= segment_duration <= 90:
|
126 |
+
score += 1.0
|
127 |
+
|
128 |
+
# Text length (not too short, not too long)
|
129 |
+
word_count = len(text.split())
|
130 |
+
if 20 <= word_count <= 100:
|
131 |
+
score += 1.0
|
132 |
+
|
133 |
+
return min(score, 10.0) # Cap at 10
|
134 |
+
|
135 |
+
def find_best_moments(self, segments: List[Dict], audio_features: Dict,
|
136 |
+
clip_duration: int = 30) -> List[Dict]:
|
137 |
+
"""Find the best moments for short clips"""
|
138 |
+
print("Analyzing segments for viral potential...")
|
139 |
+
|
140 |
+
scored_segments = []
|
141 |
+
|
142 |
+
for i, segment in enumerate(segments):
|
143 |
+
# Group segments into potential clips
|
144 |
+
clip_segments = [segment]
|
145 |
+
current_duration = segment['end'] - segment['start']
|
146 |
+
|
147 |
+
# Extend clip to reach desired duration
|
148 |
+
j = i + 1
|
149 |
+
while j < len(segments) and current_duration < clip_duration:
|
150 |
+
next_segment = segments[j]
|
151 |
+
if next_segment['end'] - segment['start'] <= clip_duration * 1.5:
|
152 |
+
clip_segments.append(next_segment)
|
153 |
+
current_duration = next_segment['end'] - segment['start']
|
154 |
+
j += 1
|
155 |
+
else:
|
156 |
+
break
|
157 |
+
|
158 |
+
# Calculate combined text and virality score
|
159 |
+
combined_text = " ".join([s['text'] for s in clip_segments])
|
160 |
+
virality_score = self.calculate_virality_score(
|
161 |
+
combined_text, audio_features, current_duration
|
162 |
+
)
|
163 |
+
|
164 |
+
scored_segments.append({
|
165 |
+
'start': segment['start'],
|
166 |
+
'end': clip_segments[-1]['end'],
|
167 |
+
'text': combined_text,
|
168 |
+
'duration': current_duration,
|
169 |
+
'virality_score': virality_score,
|
170 |
+
'segments': clip_segments
|
171 |
+
})
|
172 |
+
|
173 |
+
# Sort by virality score and remove overlaps
|
174 |
+
scored_segments.sort(key=lambda x: x['virality_score'], reverse=True)
|
175 |
+
|
176 |
+
# Remove overlapping segments
|
177 |
+
final_segments = []
|
178 |
+
for segment in scored_segments:
|
179 |
+
overlap = False
|
180 |
+
for existing in final_segments:
|
181 |
+
if (segment['start'] < existing['end'] and
|
182 |
+
segment['end'] > existing['start']):
|
183 |
+
overlap = True
|
184 |
+
break
|
185 |
+
if not overlap:
|
186 |
+
final_segments.append(segment)
|
187 |
+
if len(final_segments) >= 5: # Limit to top 5 clips
|
188 |
+
break
|
189 |
+
|
190 |
+
return final_segments
|
191 |
+
|
192 |
+
def add_emojis_to_text(self, text: str) -> str:
|
193 |
+
"""Add relevant emojis to text based on content"""
|
194 |
+
emoji_map = {
|
195 |
+
'money': 'π°', 'rich': 'π°', 'dollar': 'π΅',
|
196 |
+
'love': 'β€οΈ', 'heart': 'β€οΈ', 'like': 'π',
|
197 |
+
'fire': 'π₯', 'hot': 'π₯', 'amazing': 'π₯',
|
198 |
+
'laugh': 'π', 'funny': 'π', 'lol': 'π',
|
199 |
+
'wow': 'π±', 'omg': 'π±', 'shocking': 'π±',
|
200 |
+
'cool': 'π', 'awesome': 'π', 'great': 'π',
|
201 |
+
'think': 'π€', 'question': 'β', 'why': 'π€',
|
202 |
+
'warning': 'β οΈ', 'careful': 'β οΈ', 'danger': 'β οΈ',
|
203 |
+
'success': 'β
', 'win': 'π', 'winner': 'π',
|
204 |
+
'music': 'π΅', 'song': 'π΅', 'sound': 'π'
|
205 |
+
}
|
206 |
+
|
207 |
+
words = text.lower().split()
|
208 |
+
for word in words:
|
209 |
+
clean_word = re.sub(r'[^\w]', '', word)
|
210 |
+
if clean_word in emoji_map:
|
211 |
+
text = re.sub(f"\\b{re.escape(word)}\\b",
|
212 |
+
f"{word} {emoji_map[clean_word]}", text, flags=re.IGNORECASE)
|
213 |
+
|
214 |
+
return text
|
215 |
+
|
216 |
+
def create_clip(self, video_path: str, start_time: float, end_time: float,
|
217 |
+
text: str, output_path: str, add_subtitles: bool = True) -> str:
|
218 |
+
"""Create a short clip from the video"""
|
219 |
+
print(f"Creating clip: {start_time:.1f}s - {end_time:.1f}s")
|
220 |
+
|
221 |
+
# Load video
|
222 |
+
video = mp.VideoFileClip(video_path).subclip(start_time, end_time)
|
223 |
+
|
224 |
+
# Resize to 9:16 aspect ratio (1080x1920)
|
225 |
+
target_width = 1080
|
226 |
+
target_height = 1920
|
227 |
+
|
228 |
+
# Calculate scaling to fit the video in the frame
|
229 |
+
scale_w = target_width / video.w
|
230 |
+
scale_h = target_height / video.h
|
231 |
+
scale = min(scale_w, scale_h)
|
232 |
+
|
233 |
+
# Resize video
|
234 |
+
video_resized = video.resize(scale)
|
235 |
+
|
236 |
+
# Create background (blur or solid color)
|
237 |
+
if video_resized.h < target_height or video_resized.w < target_width:
|
238 |
+
# Create blurred background
|
239 |
+
background = video.resize((target_width, target_height))
|
240 |
+
background = background.fl_image(lambda frame: cv2.GaussianBlur(frame, (21, 21), 0))
|
241 |
+
|
242 |
+
# Overlay the main video in center
|
243 |
+
final_video = mp.CompositeVideoClip([
|
244 |
+
background,
|
245 |
+
video_resized.set_position('center')
|
246 |
+
], size=(target_width, target_height))
|
247 |
+
else:
|
248 |
+
final_video = video_resized
|
249 |
+
|
250 |
+
# Add subtitles if requested
|
251 |
+
if add_subtitles and text:
|
252 |
+
# Add emojis to text
|
253 |
+
text_with_emojis = self.add_emojis_to_text(text)
|
254 |
+
|
255 |
+
# Create text clip
|
256 |
+
txt_clip = mp.TextClip(
|
257 |
+
text_with_emojis,
|
258 |
+
fontsize=60,
|
259 |
+
color='white',
|
260 |
+
stroke_color='black',
|
261 |
+
stroke_width=3,
|
262 |
+
size=(target_width - 100, None),
|
263 |
+
method='caption'
|
264 |
+
).set_position(('center', 0.8), relative=True).set_duration(final_video.duration)
|
265 |
+
|
266 |
+
final_video = mp.CompositeVideoClip([final_video, txt_clip])
|
267 |
+
|
268 |
+
# Write the final video
|
269 |
+
final_video.write_videofile(
|
270 |
+
output_path,
|
271 |
+
codec='libx264',
|
272 |
+
audio_codec='aac',
|
273 |
+
temp_audiofile='temp-audio.m4a',
|
274 |
+
remove_temp=True,
|
275 |
+
fps=30,
|
276 |
+
preset='ultrafast' # Faster encoding for free tier
|
277 |
+
)
|
278 |
+
|
279 |
+
# Clean up
|
280 |
+
video.close()
|
281 |
+
final_video.close()
|
282 |
+
|
283 |
+
return output_path
|
284 |
+
|
285 |
+
def process_video(video_file, clip_duration, num_clips, add_subtitles):
|
286 |
+
"""Main function to process video and create clips"""
|
287 |
+
if video_file is None:
|
288 |
+
return "Please upload a video file.", [], []
|
289 |
+
|
290 |
+
clipper = AIVideoClipper()
|
291 |
+
|
292 |
+
try:
|
293 |
+
# Create temporary directory
|
294 |
+
with tempfile.TemporaryDirectory() as temp_dir:
|
295 |
+
video_path = video_file.name
|
296 |
+
|
297 |
+
# Extract audio features
|
298 |
+
print("Extracting audio features...")
|
299 |
+
audio_features = clipper.extract_audio_features(video_path)
|
300 |
+
|
301 |
+
# Transcribe video
|
302 |
+
segments = clipper.transcribe_video(video_path)
|
303 |
+
if not segments:
|
304 |
+
return "Could not transcribe video. Please check the audio quality.", [], []
|
305 |
+
|
306 |
+
# Find best moments
|
307 |
+
best_moments = clipper.find_best_moments(segments, audio_features, clip_duration)
|
308 |
+
best_moments = best_moments[:num_clips] # Limit to requested number
|
309 |
+
|
310 |
+
if not best_moments:
|
311 |
+
return "No suitable clips found. Try adjusting parameters.", [], []
|
312 |
+
|
313 |
+
# Create clips
|
314 |
+
output_videos = []
|
315 |
+
clip_info = []
|
316 |
+
|
317 |
+
for i, moment in enumerate(best_moments):
|
318 |
+
output_path = os.path.join(temp_dir, f"clip_{i+1}.mp4")
|
319 |
+
|
320 |
+
try:
|
321 |
+
clipper.create_clip(
|
322 |
+
video_path,
|
323 |
+
moment['start'],
|
324 |
+
moment['end'],
|
325 |
+
moment['text'],
|
326 |
+
output_path,
|
327 |
+
add_subtitles
|
328 |
+
)
|
329 |
+
|
330 |
+
# Copy to permanent location
|
331 |
+
permanent_path = f"clip_{i+1}_{hash(video_path)}_{i}.mp4"
|
332 |
+
os.rename(output_path, permanent_path)
|
333 |
+
|
334 |
+
output_videos.append(permanent_path)
|
335 |
+
clip_info.append({
|
336 |
+
'clip_number': i + 1,
|
337 |
+
'start_time': f"{moment['start']:.1f}s",
|
338 |
+
'end_time': f"{moment['end']:.1f}s",
|
339 |
+
'duration': f"{moment['duration']:.1f}s",
|
340 |
+
'virality_score': f"{moment['virality_score']:.2f}/10",
|
341 |
+
'text_preview': moment['text'][:100] + "..." if len(moment['text']) > 100 else moment['text']
|
342 |
+
})
|
343 |
+
|
344 |
+
except Exception as e:
|
345 |
+
print(f"Error creating clip {i+1}: {str(e)}")
|
346 |
+
continue
|
347 |
+
|
348 |
+
success_msg = f"Successfully created {len(output_videos)} clips!"
|
349 |
+
return success_msg, output_videos, clip_info
|
350 |
+
|
351 |
+
except Exception as e:
|
352 |
+
return f"Error processing video: {str(e)}", [], []
|
353 |
+
|
354 |
+
# Create Gradio interface
|
355 |
+
def create_interface():
|
356 |
+
with gr.Blocks(title="AI Video Clipper", theme=gr.themes.Soft()) as demo:
|
357 |
+
gr.Markdown(
|
358 |
+
"""
|
359 |
+
# π¬ AI Video Clipper
|
360 |
+
|
361 |
+
Transform your long videos into viral short clips automatically!
|
362 |
+
Upload your video and let AI find the most engaging moments.
|
363 |
+
|
364 |
+
**Features:**
|
365 |
+
- π€ AI-powered moment detection
|
366 |
+
- π± Auto 9:16 aspect ratio conversion
|
367 |
+
- π Automatic subtitles with emojis
|
368 |
+
- π Virality scoring
|
369 |
+
- π― Multi-language support
|
370 |
+
"""
|
371 |
+
)
|
372 |
+
|
373 |
+
with gr.Row():
|
374 |
+
with gr.Column():
|
375 |
+
video_input = gr.File(
|
376 |
+
label="Upload Video",
|
377 |
+
file_types=[".mp4", ".avi", ".mov", ".mkv", ".webm"],
|
378 |
+
type="filepath"
|
379 |
+
)
|
380 |
+
|
381 |
+
with gr.Row():
|
382 |
+
clip_duration = gr.Slider(
|
383 |
+
minimum=15,
|
384 |
+
maximum=90,
|
385 |
+
value=30,
|
386 |
+
step=5,
|
387 |
+
label="Target Clip Duration (seconds)"
|
388 |
+
)
|
389 |
+
|
390 |
+
num_clips = gr.Slider(
|
391 |
+
minimum=1,
|
392 |
+
maximum=5,
|
393 |
+
value=3,
|
394 |
+
step=1,
|
395 |
+
label="Number of Clips to Generate"
|
396 |
+
)
|
397 |
+
|
398 |
+
add_subtitles = gr.Checkbox(
|
399 |
+
label="Add Subtitles with Emojis",
|
400 |
+
value=True
|
401 |
+
)
|
402 |
+
|
403 |
+
process_btn = gr.Button(
|
404 |
+
"π Create Clips",
|
405 |
+
variant="primary",
|
406 |
+
size="lg"
|
407 |
+
)
|
408 |
+
|
409 |
+
with gr.Column():
|
410 |
+
status_output = gr.Textbox(
|
411 |
+
label="Status",
|
412 |
+
interactive=False,
|
413 |
+
lines=2
|
414 |
+
)
|
415 |
+
|
416 |
+
clips_output = gr.Gallery(
|
417 |
+
label="Generated Clips",
|
418 |
+
show_label=True,
|
419 |
+
elem_id="gallery",
|
420 |
+
columns=1,
|
421 |
+
rows=3,
|
422 |
+
height="auto",
|
423 |
+
allow_preview=True,
|
424 |
+
show_download_button=True
|
425 |
+
)
|
426 |
+
|
427 |
+
with gr.Row():
|
428 |
+
info_output = gr.JSON(
|
429 |
+
label="Clip Analysis",
|
430 |
+
visible=True
|
431 |
+
)
|
432 |
+
|
433 |
+
# Example videos section
|
434 |
+
gr.Markdown("### πΊ Tips for Best Results:")
|
435 |
+
gr.Markdown("""
|
436 |
+
- Upload videos with clear speech (podcasts, interviews, tutorials work great!)
|
437 |
+
- Longer videos (5+ minutes) provide more clip opportunities
|
438 |
+
- Videos with engaging content and emotional moments score higher
|
439 |
+
- Good audio quality improves transcription accuracy
|
440 |
+
""")
|
441 |
+
|
442 |
+
process_btn.click(
|
443 |
+
process_video,
|
444 |
+
inputs=[video_input, clip_duration, num_clips, add_subtitles],
|
445 |
+
outputs=[status_output, clips_output, info_output]
|
446 |
+
)
|
447 |
+
|
448 |
+
return demo
|
449 |
+
|
450 |
+
# Launch the app
|
451 |
+
if __name__ == "__main__":
|
452 |
+
demo = create_interface()
|
453 |
+
demo.launch(
|
454 |
+
server_name="0.0.0.0",
|
455 |
+
server_port=7860,
|
456 |
+
share=False
|
457 |
+
)
|