File size: 9,241 Bytes
3670892
dfdff51
 
 
1467791
 
 
 
 
 
 
 
 
dfdff51
 
 
 
 
 
 
1467791
 
 
 
 
 
 
dfdff51
1467791
 
 
 
 
 
 
 
 
 
dfdff51
 
1467791
 
dfdff51
1467791
 
 
 
 
 
dfdff51
1467791
 
 
 
 
 
 
 
 
 
 
dfdff51
1467791
 
 
 
 
ea1d17e
f82987b
1467791
 
 
dfdff51
 
 
 
 
1467791
 
 
 
 
dfdff51
 
 
 
 
 
 
 
 
 
1467791
dfdff51
1467791
 
dfdff51
 
1467791
 
 
dfdff51
 
 
 
ea1d17e
dfdff51
f82987b
dfdff51
 
f82987b
dfdff51
 
 
 
 
ea1d17e
 
dfdff51
 
 
 
ea1d17e
 
1467791
 
ea1d17e
 
 
 
dfdff51
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1467791
dfdff51
 
 
 
 
 
 
 
1467791
dfdff51
 
 
 
 
1467791
 
 
dfdff51
 
1467791
 
 
dfdff51
 
 
1467791
 
 
dfdff51
 
1467791
 
 
dfdff51
 
1467791
 
 
 
 
 
 
 
 
dfdff51
 
1467791
dfdff51
 
 
 
 
 
 
 
ea1d17e
dfdff51
 
 
1467791
dfdff51
 
ea1d17e
dfdff51
 
 
 
ea1d17e
dfdff51
 
 
 
 
 
 
1467791
dfdff51
f82987b
1467791
 
dfdff51
1467791
 
 
dfdff51
1467791
 
dfdff51
 
ea1d17e
 
dfdff51
 
73ad22a
1467791
dfdff51
1467791
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
import os
import torch
import gradio as gr
import datetime
from transformers import AutoTokenizer, AutoModelForCausalLM, TextGenerationPipeline
from safetensors.torch import load_file

# Constants
MODEL_CONFIG = {
    "G0-Release": "FlameF0X/Snowflake-G0-Release",
    "G0-Release-2": "FlameF0X/Snowflake-G0-Release-2",
    "G0-Release-2.5": "FlameF0X/Snowflake-G0-Release-2.5"
}

MAX_LENGTH = 384
TEMPERATURE_DEFAULT = 0.7
TOP_P_DEFAULT = 0.9
TOP_K_DEFAULT = 40
MAX_NEW_TOKENS_DEFAULT = 256

# UI parameter bounds
TEMPERATURE_MIN, TEMPERATURE_MAX = 0.1, 2.0
TOP_P_MIN, TOP_P_MAX = 0.1, 1.0
TOP_K_MIN, TOP_K_MAX = 1, 100
MAX_NEW_TOKENS_MIN, MAX_NEW_TOKENS_MAX = 16, 1024

# Styling
css = """
.gradio-container { background-color: #1e1e2f !important; color: #e0e0e0 !important; }
.header { background-color: #2b2b3c; padding: 20px; margin-bottom: 20px; border-radius: 10px; text-align: center; }
.header h1 { color: #66ccff; margin-bottom: 10px; }
.snowflake-icon { font-size: 24px; margin-right: 10px; }
.footer { text-align: center; margin-top: 20px; font-size: 0.9em; color: #999; }
.parameter-section { background-color: #2a2a3a; padding: 15px; border-radius: 8px; margin-bottom: 15px; }
.parameter-section h3 { margin-top: 0; color: #66ccff; }
.example-section { background-color: #223344; padding: 15px; border-radius: 8px; margin-bottom: 15px; }
.example-section h3 { margin-top: 0; color: #66ffaa; }
.model-select { background-color: #2a2a4a; padding: 10px; border-radius: 8px; margin-bottom: 15px; }
"""

# Model registry
model_registry = {}

def load_all_models():
    for name, model_id in MODEL_CONFIG.items():
        print(f"Loading model: {name} from {model_id}")
        tokenizer = AutoTokenizer.from_pretrained(model_id)
        if tokenizer.pad_token is None:
            tokenizer.pad_token = tokenizer.eos_token

        safetensor_path = os.path.join(model_id, "model.safetensors")
        if os.path.exists(safetensor_path):
            print("Loading from safetensors...")
            model = load_file(safetensor_path)
        else:
            print("Loading from Hugging Face or .bin...")
            model = AutoModelForCausalLM.from_pretrained(
                model_id,
                torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
                device_map="auto"
            )

        pipeline = TextGenerationPipeline(
            model=model,
            tokenizer=tokenizer,
            return_full_text=False,
            max_length=MAX_LENGTH
        )

        model_registry[name] = (model, tokenizer, pipeline)

def generate_text(prompt, model_version, temperature, top_p, top_k, max_new_tokens, history=None):
    if history is None:
        history = []
    history.append({"role": "user", "content": prompt})
    
    try:
        if model_version not in model_registry:
            raise ValueError(f"Model '{model_version}' not found.")

        _, tokenizer, pipeline = model_registry[model_version]

        outputs = pipeline(
            prompt,
            do_sample=temperature > 0,
            temperature=temperature,
            top_p=top_p,
            top_k=top_k,
            max_new_tokens=max_new_tokens,
            pad_token_id=tokenizer.pad_token_id,
            num_return_sequences=1
        )

        response = outputs[0]["generated_text"]
        history.append({"role": "assistant", "content": response, "model": model_version})

        formatted_history = []
        for entry in history:
            prefix = "👤 User: " if entry["role"] == "user" else f"❄️ [{entry.get('model', 'Model')}]: "
            formatted_history.append(f"{prefix}{entry['content']}")

        return response, history, "\n\n".join(formatted_history)
    
    except Exception as e:
        error_msg = f"Error generating response: {str(e)}"
        history.append({"role": "assistant", "content": f"[ERROR] {error_msg}", "model": model_version})
        return error_msg, history, str(history)

def clear_conversation():
    return "", [], ""

def create_demo():
    with gr.Blocks(css=css) as demo:
        # Header
        gr.HTML("""
        <div class="header">
            <h1><span class="snowflake-icon">❄️</span> Snowflake Models Demo</h1>
            <p>Experience the capabilities of the Snowflake series language models</p>
        </div>
        """)
        
        with gr.Column():
            with gr.Row(elem_classes="model-select"):
                model_version = gr.Radio(
                    choices=list(MODEL_CONFIG.keys()),
                    value=list(MODEL_CONFIG.keys())[0],
                    label="Select Model Version",
                    info="Choose which Snowflake model to use"
                )
            
            chat_history_display = gr.Textbox(
                value="", 
                label="Conversation History", 
                lines=10, 
                max_lines=30,
                interactive=False
            )
            
            history_state = gr.State([])
            
            with gr.Row():
                with gr.Column(scale=4):
                    prompt = gr.Textbox(
                        placeholder="Type your message here...", 
                        label="Your Input",
                        lines=2
                    )
                with gr.Column(scale=1):
                    submit_btn = gr.Button("Send", variant="primary")
                    clear_btn = gr.Button("Clear Conversation")

            response_output = gr.Textbox(
                value="", 
                label="Model Response", 
                lines=5,
                max_lines=10,
                interactive=False
            )
        
        # Generation Parameters
        with gr.Accordion("Generation Parameters", open=False):
            with gr.Column(elem_classes="parameter-section"):
                with gr.Row():
                    with gr.Column():
                        temperature = gr.Slider(
                            minimum=TEMPERATURE_MIN, maximum=TEMPERATURE_MAX,
                            value=TEMPERATURE_DEFAULT, step=0.05,
                            label="Temperature"
                        )
                        top_p = gr.Slider(
                            minimum=TOP_P_MIN, maximum=TOP_P_MAX,
                            value=TOP_P_DEFAULT, step=0.05,
                            label="Top-p"
                        )
                    with gr.Column():
                        top_k = gr.Slider(
                            minimum=TOP_K_MIN, maximum=TOP_K_MAX,
                            value=TOP_K_DEFAULT, step=1,
                            label="Top-k"
                        )
                        max_new_tokens = gr.Slider(
                            minimum=MAX_NEW_TOKENS_MIN, maximum=MAX_NEW_TOKENS_MAX,
                            value=MAX_NEW_TOKENS_DEFAULT, step=8,
                            label="Maximum New Tokens"
                        )
        
        # Example prompts
        examples = [
            "Write a short story about a snowflake that comes to life.",
            "Explain the concept of artificial neural networks to a 10-year-old.",
            "What are some interesting applications of natural language processing?",
            "Write a haiku about programming.",
            "Create a dialogue between two AI researchers discussing the future of language models."
        ]

        with gr.Accordion("Example Prompts", open=True):
            with gr.Column(elem_classes="example-section"):
                gr.Examples(
                    examples=examples,
                    inputs=prompt,
                    label="Click on an example to try it",
                    examples_per_page=5
                )
        
        gr.HTML(f"""
        <div class="footer">
            <p>Snowflake Models Demo • Created with Gradio • {datetime.datetime.now().year}</p>
        </div>
        """)
        
        # Interactions
        submit_btn.click(
            fn=generate_text,
            inputs=[prompt, model_version, temperature, top_p, top_k, max_new_tokens, history_state],
            outputs=[response_output, history_state, chat_history_display]
        )
        prompt.submit(
            fn=generate_text,
            inputs=[prompt, model_version, temperature, top_p, top_k, max_new_tokens, history_state],
            outputs=[response_output, history_state, chat_history_display]
        )
        clear_btn.click(
            fn=clear_conversation,
            inputs=[],
            outputs=[prompt, history_state, chat_history_display]
        )

    return demo

# Initialize
print("Loading Snowflake models...")
try:
    load_all_models()
    print("All models loaded successfully!")
    demo = create_demo()
except Exception as e:
    print(f"Error loading models: {e}")
    with gr.Blocks(css=css) as demo:
        gr.HTML(f"""
        <div class="header" style="background-color: #ffebee;">
            <h1><span class="snowflake-icon">⚠️</span> Error Loading Models</h1>
            <p>There was a problem loading the Snowflake models: {str(e)}</p>
        </div>
        """)

# Run app
if __name__ == "__main__":
    demo.launch()