File size: 9,241 Bytes
3670892 dfdff51 1467791 dfdff51 1467791 dfdff51 1467791 dfdff51 1467791 dfdff51 1467791 dfdff51 1467791 dfdff51 1467791 ea1d17e f82987b 1467791 dfdff51 1467791 dfdff51 1467791 dfdff51 1467791 dfdff51 1467791 dfdff51 ea1d17e dfdff51 f82987b dfdff51 f82987b dfdff51 ea1d17e dfdff51 ea1d17e 1467791 ea1d17e dfdff51 1467791 dfdff51 1467791 dfdff51 1467791 dfdff51 1467791 dfdff51 1467791 dfdff51 1467791 dfdff51 1467791 dfdff51 1467791 dfdff51 ea1d17e dfdff51 1467791 dfdff51 ea1d17e dfdff51 ea1d17e dfdff51 1467791 dfdff51 f82987b 1467791 dfdff51 1467791 dfdff51 1467791 dfdff51 ea1d17e dfdff51 73ad22a 1467791 dfdff51 1467791 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 |
import os
import torch
import gradio as gr
import datetime
from transformers import AutoTokenizer, AutoModelForCausalLM, TextGenerationPipeline
from safetensors.torch import load_file
# Constants
MODEL_CONFIG = {
"G0-Release": "FlameF0X/Snowflake-G0-Release",
"G0-Release-2": "FlameF0X/Snowflake-G0-Release-2",
"G0-Release-2.5": "FlameF0X/Snowflake-G0-Release-2.5"
}
MAX_LENGTH = 384
TEMPERATURE_DEFAULT = 0.7
TOP_P_DEFAULT = 0.9
TOP_K_DEFAULT = 40
MAX_NEW_TOKENS_DEFAULT = 256
# UI parameter bounds
TEMPERATURE_MIN, TEMPERATURE_MAX = 0.1, 2.0
TOP_P_MIN, TOP_P_MAX = 0.1, 1.0
TOP_K_MIN, TOP_K_MAX = 1, 100
MAX_NEW_TOKENS_MIN, MAX_NEW_TOKENS_MAX = 16, 1024
# Styling
css = """
.gradio-container { background-color: #1e1e2f !important; color: #e0e0e0 !important; }
.header { background-color: #2b2b3c; padding: 20px; margin-bottom: 20px; border-radius: 10px; text-align: center; }
.header h1 { color: #66ccff; margin-bottom: 10px; }
.snowflake-icon { font-size: 24px; margin-right: 10px; }
.footer { text-align: center; margin-top: 20px; font-size: 0.9em; color: #999; }
.parameter-section { background-color: #2a2a3a; padding: 15px; border-radius: 8px; margin-bottom: 15px; }
.parameter-section h3 { margin-top: 0; color: #66ccff; }
.example-section { background-color: #223344; padding: 15px; border-radius: 8px; margin-bottom: 15px; }
.example-section h3 { margin-top: 0; color: #66ffaa; }
.model-select { background-color: #2a2a4a; padding: 10px; border-radius: 8px; margin-bottom: 15px; }
"""
# Model registry
model_registry = {}
def load_all_models():
for name, model_id in MODEL_CONFIG.items():
print(f"Loading model: {name} from {model_id}")
tokenizer = AutoTokenizer.from_pretrained(model_id)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
safetensor_path = os.path.join(model_id, "model.safetensors")
if os.path.exists(safetensor_path):
print("Loading from safetensors...")
model = load_file(safetensor_path)
else:
print("Loading from Hugging Face or .bin...")
model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
device_map="auto"
)
pipeline = TextGenerationPipeline(
model=model,
tokenizer=tokenizer,
return_full_text=False,
max_length=MAX_LENGTH
)
model_registry[name] = (model, tokenizer, pipeline)
def generate_text(prompt, model_version, temperature, top_p, top_k, max_new_tokens, history=None):
if history is None:
history = []
history.append({"role": "user", "content": prompt})
try:
if model_version not in model_registry:
raise ValueError(f"Model '{model_version}' not found.")
_, tokenizer, pipeline = model_registry[model_version]
outputs = pipeline(
prompt,
do_sample=temperature > 0,
temperature=temperature,
top_p=top_p,
top_k=top_k,
max_new_tokens=max_new_tokens,
pad_token_id=tokenizer.pad_token_id,
num_return_sequences=1
)
response = outputs[0]["generated_text"]
history.append({"role": "assistant", "content": response, "model": model_version})
formatted_history = []
for entry in history:
prefix = "👤 User: " if entry["role"] == "user" else f"❄️ [{entry.get('model', 'Model')}]: "
formatted_history.append(f"{prefix}{entry['content']}")
return response, history, "\n\n".join(formatted_history)
except Exception as e:
error_msg = f"Error generating response: {str(e)}"
history.append({"role": "assistant", "content": f"[ERROR] {error_msg}", "model": model_version})
return error_msg, history, str(history)
def clear_conversation():
return "", [], ""
def create_demo():
with gr.Blocks(css=css) as demo:
# Header
gr.HTML("""
<div class="header">
<h1><span class="snowflake-icon">❄️</span> Snowflake Models Demo</h1>
<p>Experience the capabilities of the Snowflake series language models</p>
</div>
""")
with gr.Column():
with gr.Row(elem_classes="model-select"):
model_version = gr.Radio(
choices=list(MODEL_CONFIG.keys()),
value=list(MODEL_CONFIG.keys())[0],
label="Select Model Version",
info="Choose which Snowflake model to use"
)
chat_history_display = gr.Textbox(
value="",
label="Conversation History",
lines=10,
max_lines=30,
interactive=False
)
history_state = gr.State([])
with gr.Row():
with gr.Column(scale=4):
prompt = gr.Textbox(
placeholder="Type your message here...",
label="Your Input",
lines=2
)
with gr.Column(scale=1):
submit_btn = gr.Button("Send", variant="primary")
clear_btn = gr.Button("Clear Conversation")
response_output = gr.Textbox(
value="",
label="Model Response",
lines=5,
max_lines=10,
interactive=False
)
# Generation Parameters
with gr.Accordion("Generation Parameters", open=False):
with gr.Column(elem_classes="parameter-section"):
with gr.Row():
with gr.Column():
temperature = gr.Slider(
minimum=TEMPERATURE_MIN, maximum=TEMPERATURE_MAX,
value=TEMPERATURE_DEFAULT, step=0.05,
label="Temperature"
)
top_p = gr.Slider(
minimum=TOP_P_MIN, maximum=TOP_P_MAX,
value=TOP_P_DEFAULT, step=0.05,
label="Top-p"
)
with gr.Column():
top_k = gr.Slider(
minimum=TOP_K_MIN, maximum=TOP_K_MAX,
value=TOP_K_DEFAULT, step=1,
label="Top-k"
)
max_new_tokens = gr.Slider(
minimum=MAX_NEW_TOKENS_MIN, maximum=MAX_NEW_TOKENS_MAX,
value=MAX_NEW_TOKENS_DEFAULT, step=8,
label="Maximum New Tokens"
)
# Example prompts
examples = [
"Write a short story about a snowflake that comes to life.",
"Explain the concept of artificial neural networks to a 10-year-old.",
"What are some interesting applications of natural language processing?",
"Write a haiku about programming.",
"Create a dialogue between two AI researchers discussing the future of language models."
]
with gr.Accordion("Example Prompts", open=True):
with gr.Column(elem_classes="example-section"):
gr.Examples(
examples=examples,
inputs=prompt,
label="Click on an example to try it",
examples_per_page=5
)
gr.HTML(f"""
<div class="footer">
<p>Snowflake Models Demo • Created with Gradio • {datetime.datetime.now().year}</p>
</div>
""")
# Interactions
submit_btn.click(
fn=generate_text,
inputs=[prompt, model_version, temperature, top_p, top_k, max_new_tokens, history_state],
outputs=[response_output, history_state, chat_history_display]
)
prompt.submit(
fn=generate_text,
inputs=[prompt, model_version, temperature, top_p, top_k, max_new_tokens, history_state],
outputs=[response_output, history_state, chat_history_display]
)
clear_btn.click(
fn=clear_conversation,
inputs=[],
outputs=[prompt, history_state, chat_history_display]
)
return demo
# Initialize
print("Loading Snowflake models...")
try:
load_all_models()
print("All models loaded successfully!")
demo = create_demo()
except Exception as e:
print(f"Error loading models: {e}")
with gr.Blocks(css=css) as demo:
gr.HTML(f"""
<div class="header" style="background-color: #ffebee;">
<h1><span class="snowflake-icon">⚠️</span> Error Loading Models</h1>
<p>There was a problem loading the Snowflake models: {str(e)}</p>
</div>
""")
# Run app
if __name__ == "__main__":
demo.launch()
|