Update app.py
Browse files
app.py
CHANGED
@@ -1,177 +1,85 @@
|
|
1 |
import os
|
2 |
import torch
|
3 |
import gradio as gr
|
4 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM, TextGenerationPipeline
|
5 |
-
from safetensors.torch import load_file # Import safetensors for loading .safetensors models
|
6 |
import datetime
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
-
# Model Constants
|
9 |
-
MODEL_ID_V1 = "FlameF0X/Snowflake-G0-Release"
|
10 |
-
MODEL_ID_V2 = "FlameF0X/Snowflake-G0-Release-2"
|
11 |
-
MODEL_ID_V3 = "FlameF0X/Snowflake-G0-Release-2.5"
|
12 |
MAX_LENGTH = 384
|
13 |
-
TEMPERATURE_MIN = 0.1
|
14 |
-
TEMPERATURE_MAX = 2.0
|
15 |
TEMPERATURE_DEFAULT = 0.7
|
16 |
-
TOP_P_MIN = 0.1
|
17 |
-
TOP_P_MAX = 1.0
|
18 |
TOP_P_DEFAULT = 0.9
|
19 |
-
TOP_K_MIN = 1
|
20 |
-
TOP_K_MAX = 100
|
21 |
TOP_K_DEFAULT = 40
|
22 |
-
MAX_NEW_TOKENS_MIN = 16
|
23 |
-
MAX_NEW_TOKENS_MAX = 1024
|
24 |
MAX_NEW_TOKENS_DEFAULT = 256
|
25 |
|
26 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
css = """
|
28 |
-
.gradio-container {
|
29 |
-
|
30 |
-
|
31 |
-
}
|
32 |
-
.
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
}
|
39 |
-
.header h1 {
|
40 |
-
color: #66ccff;
|
41 |
-
margin-bottom: 10px;
|
42 |
-
}
|
43 |
-
.snowflake-icon {
|
44 |
-
font-size: 24px;
|
45 |
-
margin-right: 10px;
|
46 |
-
}
|
47 |
-
.footer {
|
48 |
-
text-align: center;
|
49 |
-
margin-top: 20px;
|
50 |
-
font-size: 0.9em;
|
51 |
-
color: #999;
|
52 |
-
}
|
53 |
-
.parameter-section {
|
54 |
-
background-color: #2a2a3a;
|
55 |
-
padding: 15px;
|
56 |
-
border-radius: 8px;
|
57 |
-
margin-bottom: 15px;
|
58 |
-
}
|
59 |
-
.parameter-section h3 {
|
60 |
-
margin-top: 0;
|
61 |
-
color: #66ccff;
|
62 |
-
}
|
63 |
-
.example-section {
|
64 |
-
background-color: #223344;
|
65 |
-
padding: 15px;
|
66 |
-
border-radius: 8px;
|
67 |
-
margin-bottom: 15px;
|
68 |
-
}
|
69 |
-
.example-section h3 {
|
70 |
-
margin-top: 0;
|
71 |
-
color: #66ffaa;
|
72 |
-
}
|
73 |
-
.model-select {
|
74 |
-
background-color: #2a2a4a;
|
75 |
-
padding: 10px;
|
76 |
-
border-radius: 8px;
|
77 |
-
margin-bottom: 15px;
|
78 |
-
}
|
79 |
"""
|
80 |
|
81 |
-
#
|
82 |
-
|
83 |
-
tokenizer_v1 = None
|
84 |
-
pipeline_v1 = None
|
85 |
-
model_v2 = None
|
86 |
-
tokenizer_v2 = None
|
87 |
-
pipeline_v2 = None
|
88 |
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
tokenizer_v1 = AutoTokenizer.from_pretrained(MODEL_ID_V1)
|
96 |
-
if tokenizer_v1.pad_token is None:
|
97 |
-
tokenizer_v1.pad_token = tokenizer_v1.eos_token
|
98 |
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
)
|
111 |
-
|
112 |
-
pipeline_v1 = TextGenerationPipeline(
|
113 |
-
model=model_v1,
|
114 |
-
tokenizer=tokenizer_v1,
|
115 |
-
return_full_text=False,
|
116 |
-
max_length=MAX_LENGTH
|
117 |
-
)
|
118 |
-
|
119 |
-
# Load the second model
|
120 |
-
print(f"Loading model from {MODEL_ID_V2}...")
|
121 |
-
tokenizer_v2 = AutoTokenizer.from_pretrained(MODEL_ID_V2)
|
122 |
-
if tokenizer_v2.pad_token is None:
|
123 |
-
tokenizer_v2.pad_token = tokenizer_v2.eos_token
|
124 |
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
else:
|
131 |
-
print("Loading model from .bin file...")
|
132 |
-
model_v2 = AutoModelForCausalLM.from_pretrained(
|
133 |
-
MODEL_ID_V2,
|
134 |
-
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
135 |
-
device_map="auto"
|
136 |
)
|
137 |
-
|
138 |
-
pipeline_v2 = TextGenerationPipeline(
|
139 |
-
model=model_v2,
|
140 |
-
tokenizer=tokenizer_v2,
|
141 |
-
return_full_text=False,
|
142 |
-
max_length=MAX_LENGTH
|
143 |
-
)
|
144 |
-
|
145 |
-
return (model_v1, tokenizer_v1, pipeline_v1), (model_v2, tokenizer_v2, pipeline_v2)
|
146 |
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
model_version,
|
151 |
-
temperature=TEMPERATURE_DEFAULT,
|
152 |
-
top_p=TOP_P_DEFAULT,
|
153 |
-
top_k=TOP_K_DEFAULT,
|
154 |
-
max_new_tokens=MAX_NEW_TOKENS_DEFAULT,
|
155 |
-
history=None
|
156 |
-
):
|
157 |
if history is None:
|
158 |
history = []
|
159 |
-
|
160 |
-
# Add current prompt to history
|
161 |
history.append({"role": "user", "content": prompt})
|
162 |
|
163 |
try:
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
else: # "G0-Release-2"
|
170 |
-
pipeline = pipeline_v2
|
171 |
-
tokenizer = tokenizer_v2
|
172 |
-
model_name = "Snowflake-G0-Release-2"
|
173 |
-
|
174 |
-
# Generate response
|
175 |
outputs = pipeline(
|
176 |
prompt,
|
177 |
do_sample=temperature > 0,
|
@@ -182,22 +90,15 @@ def generate_text(
|
|
182 |
pad_token_id=tokenizer.pad_token_id,
|
183 |
num_return_sequences=1
|
184 |
)
|
185 |
-
|
186 |
response = outputs[0]["generated_text"]
|
187 |
-
|
188 |
-
|
189 |
-
history.append({"role": "assistant", "content": response, "model": model_name})
|
190 |
-
|
191 |
-
# Format chat history for display
|
192 |
formatted_history = []
|
193 |
for entry in history:
|
194 |
-
if entry["role"] == "user":
|
195 |
-
|
196 |
-
|
197 |
-
model_indicator = f"[{entry.get('model', 'Snowflake')}]"
|
198 |
-
role_prefix = f"❄️ {model_indicator}: "
|
199 |
-
formatted_history.append(f"{role_prefix}{entry['content']}")
|
200 |
-
|
201 |
return response, history, "\n\n".join(formatted_history)
|
202 |
|
203 |
except Exception as e:
|
@@ -208,19 +109,6 @@ def generate_text(
|
|
208 |
def clear_conversation():
|
209 |
return "", [], ""
|
210 |
|
211 |
-
def apply_preset_example(example, history):
|
212 |
-
return example, history
|
213 |
-
|
214 |
-
# Example prompts
|
215 |
-
examples = [
|
216 |
-
"Write a short story about a snowflake that comes to life.",
|
217 |
-
"Explain the concept of artificial neural networks to a 10-year-old.",
|
218 |
-
"What are some interesting applications of natural language processing?",
|
219 |
-
"Write a haiku about programming.",
|
220 |
-
"Create a dialogue between two AI researchers discussing the future of language models."
|
221 |
-
]
|
222 |
-
|
223 |
-
# Main function
|
224 |
def create_demo():
|
225 |
with gr.Blocks(css=css) as demo:
|
226 |
# Header
|
@@ -231,14 +119,12 @@ def create_demo():
|
|
231 |
</div>
|
232 |
""")
|
233 |
|
234 |
-
# Chat interface
|
235 |
with gr.Column():
|
236 |
-
# Model selection
|
237 |
with gr.Row(elem_classes="model-select"):
|
238 |
model_version = gr.Radio(
|
239 |
-
|
|
|
240 |
label="Select Model Version",
|
241 |
-
value="G0-Release-2",
|
242 |
info="Choose which Snowflake model to use"
|
243 |
)
|
244 |
|
@@ -250,10 +136,8 @@ def create_demo():
|
|
250 |
interactive=False
|
251 |
)
|
252 |
|
253 |
-
# Invisible state variables
|
254 |
history_state = gr.State([])
|
255 |
|
256 |
-
# Input and output
|
257 |
with gr.Row():
|
258 |
with gr.Column(scale=4):
|
259 |
prompt = gr.Textbox(
|
@@ -264,7 +148,7 @@ def create_demo():
|
|
264 |
with gr.Column(scale=1):
|
265 |
submit_btn = gr.Button("Send", variant="primary")
|
266 |
clear_btn = gr.Button("Clear Conversation")
|
267 |
-
|
268 |
response_output = gr.Textbox(
|
269 |
value="",
|
270 |
label="Model Response",
|
@@ -273,106 +157,92 @@ def create_demo():
|
|
273 |
interactive=False
|
274 |
)
|
275 |
|
276 |
-
#
|
277 |
with gr.Accordion("Generation Parameters", open=False):
|
278 |
with gr.Column(elem_classes="parameter-section"):
|
279 |
with gr.Row():
|
280 |
with gr.Column():
|
281 |
temperature = gr.Slider(
|
282 |
-
minimum=TEMPERATURE_MIN,
|
283 |
-
|
284 |
-
|
285 |
-
step=0.05,
|
286 |
-
label="Temperature",
|
287 |
-
info="Higher = more creative, Lower = more deterministic"
|
288 |
)
|
289 |
-
|
290 |
top_p = gr.Slider(
|
291 |
-
minimum=TOP_P_MIN,
|
292 |
-
|
293 |
-
|
294 |
-
step=0.05,
|
295 |
-
label="Top-p (nucleus sampling)",
|
296 |
-
info="Controls diversity via cumulative probability"
|
297 |
)
|
298 |
-
|
299 |
with gr.Column():
|
300 |
top_k = gr.Slider(
|
301 |
-
minimum=TOP_K_MIN,
|
302 |
-
|
303 |
-
|
304 |
-
step=1,
|
305 |
-
label="Top-k",
|
306 |
-
info="Limits word choice to top k options"
|
307 |
)
|
308 |
-
|
309 |
max_new_tokens = gr.Slider(
|
310 |
-
minimum=MAX_NEW_TOKENS_MIN,
|
311 |
-
|
312 |
-
|
313 |
-
step=8,
|
314 |
-
label="Maximum New Tokens",
|
315 |
-
info="Controls the length of generated response"
|
316 |
)
|
317 |
|
318 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
319 |
with gr.Accordion("Example Prompts", open=True):
|
320 |
with gr.Column(elem_classes="example-section"):
|
321 |
-
|
322 |
examples=examples,
|
323 |
inputs=prompt,
|
324 |
label="Click on an example to try it",
|
325 |
examples_per_page=5
|
326 |
)
|
327 |
|
328 |
-
# Footer
|
329 |
gr.HTML(f"""
|
330 |
<div class="footer">
|
331 |
<p>Snowflake Models Demo • Created with Gradio • {datetime.datetime.now().year}</p>
|
332 |
</div>
|
333 |
""")
|
334 |
|
335 |
-
#
|
336 |
submit_btn.click(
|
337 |
fn=generate_text,
|
338 |
inputs=[prompt, model_version, temperature, top_p, top_k, max_new_tokens, history_state],
|
339 |
outputs=[response_output, history_state, chat_history_display]
|
340 |
)
|
341 |
-
|
342 |
prompt.submit(
|
343 |
fn=generate_text,
|
344 |
inputs=[prompt, model_version, temperature, top_p, top_k, max_new_tokens, history_state],
|
345 |
outputs=[response_output, history_state, chat_history_display]
|
346 |
)
|
347 |
-
|
348 |
clear_btn.click(
|
349 |
fn=clear_conversation,
|
350 |
inputs=[],
|
351 |
outputs=[prompt, history_state, chat_history_display]
|
352 |
)
|
353 |
-
|
354 |
return demo
|
355 |
|
356 |
-
#
|
357 |
-
print("Loading Snowflake models
|
358 |
try:
|
359 |
-
(
|
360 |
-
print("
|
|
|
361 |
except Exception as e:
|
362 |
-
print(f"Error loading models: {
|
363 |
-
|
364 |
-
with gr.Blocks(css=css) as error_demo:
|
365 |
gr.HTML(f"""
|
366 |
<div class="header" style="background-color: #ffebee;">
|
367 |
<h1><span class="snowflake-icon">⚠️</span> Error Loading Models</h1>
|
368 |
<p>There was a problem loading the Snowflake models: {str(e)}</p>
|
369 |
</div>
|
370 |
""")
|
371 |
-
demo = error_demo
|
372 |
-
|
373 |
-
# Create and launch the demo
|
374 |
-
demo = create_demo()
|
375 |
|
376 |
-
#
|
377 |
if __name__ == "__main__":
|
378 |
-
demo.launch()
|
|
|
1 |
import os
|
2 |
import torch
|
3 |
import gradio as gr
|
|
|
|
|
4 |
import datetime
|
5 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, TextGenerationPipeline
|
6 |
+
from safetensors.torch import load_file
|
7 |
+
|
8 |
+
# Constants
|
9 |
+
MODEL_CONFIG = {
|
10 |
+
"G0-Release": "FlameF0X/Snowflake-G0-Release",
|
11 |
+
"G0-Release-2": "FlameF0X/Snowflake-G0-Release-2",
|
12 |
+
"G0-Release-2.5": "FlameF0X/Snowflake-G0-Release-2.5"
|
13 |
+
}
|
14 |
|
|
|
|
|
|
|
|
|
15 |
MAX_LENGTH = 384
|
|
|
|
|
16 |
TEMPERATURE_DEFAULT = 0.7
|
|
|
|
|
17 |
TOP_P_DEFAULT = 0.9
|
|
|
|
|
18 |
TOP_K_DEFAULT = 40
|
|
|
|
|
19 |
MAX_NEW_TOKENS_DEFAULT = 256
|
20 |
|
21 |
+
# UI parameter bounds
|
22 |
+
TEMPERATURE_MIN, TEMPERATURE_MAX = 0.1, 2.0
|
23 |
+
TOP_P_MIN, TOP_P_MAX = 0.1, 1.0
|
24 |
+
TOP_K_MIN, TOP_K_MAX = 1, 100
|
25 |
+
MAX_NEW_TOKENS_MIN, MAX_NEW_TOKENS_MAX = 16, 1024
|
26 |
+
|
27 |
+
# Styling
|
28 |
css = """
|
29 |
+
.gradio-container { background-color: #1e1e2f !important; color: #e0e0e0 !important; }
|
30 |
+
.header { background-color: #2b2b3c; padding: 20px; margin-bottom: 20px; border-radius: 10px; text-align: center; }
|
31 |
+
.header h1 { color: #66ccff; margin-bottom: 10px; }
|
32 |
+
.snowflake-icon { font-size: 24px; margin-right: 10px; }
|
33 |
+
.footer { text-align: center; margin-top: 20px; font-size: 0.9em; color: #999; }
|
34 |
+
.parameter-section { background-color: #2a2a3a; padding: 15px; border-radius: 8px; margin-bottom: 15px; }
|
35 |
+
.parameter-section h3 { margin-top: 0; color: #66ccff; }
|
36 |
+
.example-section { background-color: #223344; padding: 15px; border-radius: 8px; margin-bottom: 15px; }
|
37 |
+
.example-section h3 { margin-top: 0; color: #66ffaa; }
|
38 |
+
.model-select { background-color: #2a2a4a; padding: 10px; border-radius: 8px; margin-bottom: 15px; }
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
"""
|
40 |
|
41 |
+
# Model registry
|
42 |
+
model_registry = {}
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
+
def load_all_models():
|
45 |
+
for name, model_id in MODEL_CONFIG.items():
|
46 |
+
print(f"Loading model: {name} from {model_id}")
|
47 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
48 |
+
if tokenizer.pad_token is None:
|
49 |
+
tokenizer.pad_token = tokenizer.eos_token
|
|
|
|
|
|
|
50 |
|
51 |
+
safetensor_path = os.path.join(model_id, "model.safetensors")
|
52 |
+
if os.path.exists(safetensor_path):
|
53 |
+
print("Loading from safetensors...")
|
54 |
+
model = load_file(safetensor_path)
|
55 |
+
else:
|
56 |
+
print("Loading from Hugging Face or .bin...")
|
57 |
+
model = AutoModelForCausalLM.from_pretrained(
|
58 |
+
model_id,
|
59 |
+
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
60 |
+
device_map="auto"
|
61 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
|
63 |
+
pipeline = TextGenerationPipeline(
|
64 |
+
model=model,
|
65 |
+
tokenizer=tokenizer,
|
66 |
+
return_full_text=False,
|
67 |
+
max_length=MAX_LENGTH
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
|
70 |
+
model_registry[name] = (model, tokenizer, pipeline)
|
71 |
+
|
72 |
+
def generate_text(prompt, model_version, temperature, top_p, top_k, max_new_tokens, history=None):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
if history is None:
|
74 |
history = []
|
|
|
|
|
75 |
history.append({"role": "user", "content": prompt})
|
76 |
|
77 |
try:
|
78 |
+
if model_version not in model_registry:
|
79 |
+
raise ValueError(f"Model '{model_version}' not found.")
|
80 |
+
|
81 |
+
_, tokenizer, pipeline = model_registry[model_version]
|
82 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
outputs = pipeline(
|
84 |
prompt,
|
85 |
do_sample=temperature > 0,
|
|
|
90 |
pad_token_id=tokenizer.pad_token_id,
|
91 |
num_return_sequences=1
|
92 |
)
|
93 |
+
|
94 |
response = outputs[0]["generated_text"]
|
95 |
+
history.append({"role": "assistant", "content": response, "model": model_version})
|
96 |
+
|
|
|
|
|
|
|
97 |
formatted_history = []
|
98 |
for entry in history:
|
99 |
+
prefix = "👤 User: " if entry["role"] == "user" else f"❄️ [{entry.get('model', 'Model')}]: "
|
100 |
+
formatted_history.append(f"{prefix}{entry['content']}")
|
101 |
+
|
|
|
|
|
|
|
|
|
102 |
return response, history, "\n\n".join(formatted_history)
|
103 |
|
104 |
except Exception as e:
|
|
|
109 |
def clear_conversation():
|
110 |
return "", [], ""
|
111 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
112 |
def create_demo():
|
113 |
with gr.Blocks(css=css) as demo:
|
114 |
# Header
|
|
|
119 |
</div>
|
120 |
""")
|
121 |
|
|
|
122 |
with gr.Column():
|
|
|
123 |
with gr.Row(elem_classes="model-select"):
|
124 |
model_version = gr.Radio(
|
125 |
+
choices=list(MODEL_CONFIG.keys()),
|
126 |
+
value=list(MODEL_CONFIG.keys())[0],
|
127 |
label="Select Model Version",
|
|
|
128 |
info="Choose which Snowflake model to use"
|
129 |
)
|
130 |
|
|
|
136 |
interactive=False
|
137 |
)
|
138 |
|
|
|
139 |
history_state = gr.State([])
|
140 |
|
|
|
141 |
with gr.Row():
|
142 |
with gr.Column(scale=4):
|
143 |
prompt = gr.Textbox(
|
|
|
148 |
with gr.Column(scale=1):
|
149 |
submit_btn = gr.Button("Send", variant="primary")
|
150 |
clear_btn = gr.Button("Clear Conversation")
|
151 |
+
|
152 |
response_output = gr.Textbox(
|
153 |
value="",
|
154 |
label="Model Response",
|
|
|
157 |
interactive=False
|
158 |
)
|
159 |
|
160 |
+
# Generation Parameters
|
161 |
with gr.Accordion("Generation Parameters", open=False):
|
162 |
with gr.Column(elem_classes="parameter-section"):
|
163 |
with gr.Row():
|
164 |
with gr.Column():
|
165 |
temperature = gr.Slider(
|
166 |
+
minimum=TEMPERATURE_MIN, maximum=TEMPERATURE_MAX,
|
167 |
+
value=TEMPERATURE_DEFAULT, step=0.05,
|
168 |
+
label="Temperature"
|
|
|
|
|
|
|
169 |
)
|
|
|
170 |
top_p = gr.Slider(
|
171 |
+
minimum=TOP_P_MIN, maximum=TOP_P_MAX,
|
172 |
+
value=TOP_P_DEFAULT, step=0.05,
|
173 |
+
label="Top-p"
|
|
|
|
|
|
|
174 |
)
|
|
|
175 |
with gr.Column():
|
176 |
top_k = gr.Slider(
|
177 |
+
minimum=TOP_K_MIN, maximum=TOP_K_MAX,
|
178 |
+
value=TOP_K_DEFAULT, step=1,
|
179 |
+
label="Top-k"
|
|
|
|
|
|
|
180 |
)
|
|
|
181 |
max_new_tokens = gr.Slider(
|
182 |
+
minimum=MAX_NEW_TOKENS_MIN, maximum=MAX_NEW_TOKENS_MAX,
|
183 |
+
value=MAX_NEW_TOKENS_DEFAULT, step=8,
|
184 |
+
label="Maximum New Tokens"
|
|
|
|
|
|
|
185 |
)
|
186 |
|
187 |
+
# Example prompts
|
188 |
+
examples = [
|
189 |
+
"Write a short story about a snowflake that comes to life.",
|
190 |
+
"Explain the concept of artificial neural networks to a 10-year-old.",
|
191 |
+
"What are some interesting applications of natural language processing?",
|
192 |
+
"Write a haiku about programming.",
|
193 |
+
"Create a dialogue between two AI researchers discussing the future of language models."
|
194 |
+
]
|
195 |
+
|
196 |
with gr.Accordion("Example Prompts", open=True):
|
197 |
with gr.Column(elem_classes="example-section"):
|
198 |
+
gr.Examples(
|
199 |
examples=examples,
|
200 |
inputs=prompt,
|
201 |
label="Click on an example to try it",
|
202 |
examples_per_page=5
|
203 |
)
|
204 |
|
|
|
205 |
gr.HTML(f"""
|
206 |
<div class="footer">
|
207 |
<p>Snowflake Models Demo • Created with Gradio • {datetime.datetime.now().year}</p>
|
208 |
</div>
|
209 |
""")
|
210 |
|
211 |
+
# Interactions
|
212 |
submit_btn.click(
|
213 |
fn=generate_text,
|
214 |
inputs=[prompt, model_version, temperature, top_p, top_k, max_new_tokens, history_state],
|
215 |
outputs=[response_output, history_state, chat_history_display]
|
216 |
)
|
|
|
217 |
prompt.submit(
|
218 |
fn=generate_text,
|
219 |
inputs=[prompt, model_version, temperature, top_p, top_k, max_new_tokens, history_state],
|
220 |
outputs=[response_output, history_state, chat_history_display]
|
221 |
)
|
|
|
222 |
clear_btn.click(
|
223 |
fn=clear_conversation,
|
224 |
inputs=[],
|
225 |
outputs=[prompt, history_state, chat_history_display]
|
226 |
)
|
227 |
+
|
228 |
return demo
|
229 |
|
230 |
+
# Initialize
|
231 |
+
print("Loading Snowflake models...")
|
232 |
try:
|
233 |
+
load_all_models()
|
234 |
+
print("All models loaded successfully!")
|
235 |
+
demo = create_demo()
|
236 |
except Exception as e:
|
237 |
+
print(f"Error loading models: {e}")
|
238 |
+
with gr.Blocks(css=css) as demo:
|
|
|
239 |
gr.HTML(f"""
|
240 |
<div class="header" style="background-color: #ffebee;">
|
241 |
<h1><span class="snowflake-icon">⚠️</span> Error Loading Models</h1>
|
242 |
<p>There was a problem loading the Snowflake models: {str(e)}</p>
|
243 |
</div>
|
244 |
""")
|
|
|
|
|
|
|
|
|
245 |
|
246 |
+
# Run app
|
247 |
if __name__ == "__main__":
|
248 |
+
demo.launch()
|