Update app.py
Browse files
app.py
CHANGED
@@ -2,11 +2,10 @@ import os
|
|
2 |
import torch
|
3 |
import gradio as gr
|
4 |
from transformers import AutoTokenizer, AutoModelForCausalLM, TextGenerationPipeline
|
5 |
-
from safetensors.torch import load_file # Import safetensors for loading .safetensors models
|
6 |
import datetime
|
7 |
|
8 |
# Model Constants
|
9 |
-
MODEL_ID = "
|
10 |
MAX_LENGTH = 384
|
11 |
TEMPERATURE_MIN = 0.1
|
12 |
TEMPERATURE_MAX = 2.0
|
@@ -70,32 +69,23 @@ css = """
|
|
70 |
}
|
71 |
"""
|
72 |
|
73 |
-
# Helper
|
74 |
def load_model_and_tokenizer():
|
75 |
-
global model, tokenizer, pipeline
|
76 |
|
77 |
-
|
78 |
-
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
|
79 |
|
80 |
-
|
|
|
81 |
if tokenizer.pad_token is None:
|
82 |
tokenizer.pad_token = tokenizer.eos_token
|
83 |
|
84 |
-
|
85 |
-
|
|
|
|
|
|
|
86 |
|
87 |
-
if os.path.exists(model_file_path):
|
88 |
-
# Check if safetensors file exists
|
89 |
-
print("Loading model from safetensors file...")
|
90 |
-
model = load_file(model_file_path) # Safetensors loading
|
91 |
-
else:
|
92 |
-
# Load from standard .bin file
|
93 |
-
print("Loading model from .bin file...")
|
94 |
-
model = AutoModelForCausalLM.from_pretrained(MODEL_ID,
|
95 |
-
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
96 |
-
device_map="auto")
|
97 |
-
|
98 |
-
# Initialize the generation pipeline
|
99 |
pipeline = TextGenerationPipeline(
|
100 |
model=model,
|
101 |
tokenizer=tokenizer,
|
@@ -103,6 +93,7 @@ def load_model_and_tokenizer():
|
|
103 |
max_length=MAX_LENGTH
|
104 |
)
|
105 |
|
|
|
106 |
return model, tokenizer, pipeline
|
107 |
|
108 |
# Helper functions for generation
|
@@ -117,11 +108,9 @@ def generate_text(
|
|
117 |
if history is None:
|
118 |
history = []
|
119 |
|
120 |
-
# Add current prompt to history
|
121 |
history.append({"role": "user", "content": prompt})
|
122 |
-
|
123 |
try:
|
124 |
-
# Generate response
|
125 |
outputs = pipeline(
|
126 |
prompt,
|
127 |
do_sample=temperature > 0,
|
@@ -132,20 +121,17 @@ def generate_text(
|
|
132 |
pad_token_id=tokenizer.pad_token_id,
|
133 |
num_return_sequences=1
|
134 |
)
|
135 |
-
|
136 |
response = outputs[0]["generated_text"]
|
137 |
-
|
138 |
-
# Add model response to history
|
139 |
history.append({"role": "assistant", "content": response})
|
140 |
-
|
141 |
-
# Format chat history for display
|
142 |
formatted_history = []
|
143 |
for entry in history:
|
144 |
role_prefix = "👤 User: " if entry["role"] == "user" else "❄️ Snowflake: "
|
145 |
formatted_history.append(f"{role_prefix}{entry['content']}")
|
146 |
-
|
147 |
return response, history, "\n\n".join(formatted_history)
|
148 |
-
|
149 |
except Exception as e:
|
150 |
error_msg = f"Error generating response: {str(e)}"
|
151 |
history.append({"role": "assistant", "content": f"[ERROR] {error_msg}"})
|
@@ -166,7 +152,7 @@ examples = [
|
|
166 |
"Create a dialogue between two AI researchers discussing the future of language models."
|
167 |
]
|
168 |
|
169 |
-
# Main
|
170 |
def create_demo():
|
171 |
with gr.Blocks(css=css) as demo:
|
172 |
# Header
|
@@ -177,29 +163,29 @@ def create_demo():
|
|
177 |
</div>
|
178 |
""")
|
179 |
|
180 |
-
#
|
181 |
with gr.Accordion("About Snowflake-G0-Release", open=False):
|
182 |
gr.Markdown("""
|
183 |
## Snowflake-G0-Release
|
184 |
|
185 |
-
|
186 |
|
187 |
-
### Model
|
188 |
- Architecture: SnowflakeCore
|
189 |
- Hidden size: 384
|
190 |
-
-
|
191 |
-
-
|
192 |
-
- Feed-forward
|
193 |
-
-
|
194 |
- Vocabulary size: 30522 (BERT tokenizer)
|
195 |
|
196 |
-
###
|
197 |
-
-
|
198 |
-
- Fused QKV
|
199 |
-
- Pre-norm
|
200 |
-
-
|
201 |
""")
|
202 |
-
|
203 |
# Chat interface
|
204 |
with gr.Column():
|
205 |
chat_history_display = gr.Textbox(
|
@@ -209,11 +195,8 @@ def create_demo():
|
|
209 |
max_lines=30,
|
210 |
interactive=False
|
211 |
)
|
212 |
-
|
213 |
-
# Invisible state variables
|
214 |
history_state = gr.State([])
|
215 |
-
|
216 |
-
# Input and output
|
217 |
with gr.Row():
|
218 |
with gr.Column(scale=4):
|
219 |
prompt = gr.Textbox(
|
@@ -224,7 +207,7 @@ def create_demo():
|
|
224 |
with gr.Column(scale=1):
|
225 |
submit_btn = gr.Button("Send", variant="primary")
|
226 |
clear_btn = gr.Button("Clear Conversation")
|
227 |
-
|
228 |
response_output = gr.Textbox(
|
229 |
value="",
|
230 |
label="Model Response",
|
@@ -232,8 +215,8 @@ def create_demo():
|
|
232 |
max_lines=10,
|
233 |
interactive=False
|
234 |
)
|
235 |
-
|
236 |
-
#
|
237 |
with gr.Accordion("Generation Parameters", open=False):
|
238 |
with gr.Column(elem_classes="parameter-section"):
|
239 |
with gr.Row():
|
@@ -243,95 +226,84 @@ def create_demo():
|
|
243 |
maximum=TEMPERATURE_MAX,
|
244 |
value=TEMPERATURE_DEFAULT,
|
245 |
step=0.05,
|
246 |
-
label="Temperature"
|
247 |
-
info="Higher = more creative, Lower = more deterministic"
|
248 |
)
|
249 |
-
|
250 |
top_p = gr.Slider(
|
251 |
minimum=TOP_P_MIN,
|
252 |
maximum=TOP_P_MAX,
|
253 |
value=TOP_P_DEFAULT,
|
254 |
step=0.05,
|
255 |
-
label="Top-p (nucleus sampling)"
|
256 |
-
info="Controls diversity via cumulative probability"
|
257 |
)
|
258 |
-
|
259 |
with gr.Column():
|
260 |
top_k = gr.Slider(
|
261 |
minimum=TOP_K_MIN,
|
262 |
maximum=TOP_K_MAX,
|
263 |
value=TOP_K_DEFAULT,
|
264 |
step=1,
|
265 |
-
label="Top-k"
|
266 |
-
info="Limits word choice to top k options"
|
267 |
)
|
268 |
-
|
269 |
max_new_tokens = gr.Slider(
|
270 |
minimum=MAX_NEW_TOKENS_MIN,
|
271 |
maximum=MAX_NEW_TOKENS_MAX,
|
272 |
value=MAX_NEW_TOKENS_DEFAULT,
|
273 |
step=8,
|
274 |
-
label="Maximum New Tokens"
|
275 |
-
info="Controls the length of generated response"
|
276 |
)
|
277 |
-
|
278 |
-
#
|
279 |
with gr.Accordion("Example Prompts", open=True):
|
280 |
with gr.Column(elem_classes="example-section"):
|
281 |
-
|
282 |
examples=examples,
|
283 |
inputs=prompt,
|
284 |
-
label="Click
|
285 |
examples_per_page=5
|
286 |
)
|
287 |
-
|
288 |
# Footer
|
289 |
gr.HTML(f"""
|
290 |
<div class="footer">
|
291 |
<p>Snowflake-G0-Release Demo • Created with Gradio • {datetime.datetime.now().year}</p>
|
292 |
</div>
|
293 |
""")
|
294 |
-
|
295 |
-
#
|
296 |
submit_btn.click(
|
297 |
fn=generate_text,
|
298 |
inputs=[prompt, temperature, top_p, top_k, max_new_tokens, history_state],
|
299 |
outputs=[response_output, history_state, chat_history_display]
|
300 |
)
|
301 |
-
|
302 |
prompt.submit(
|
303 |
fn=generate_text,
|
304 |
inputs=[prompt, temperature, top_p, top_k, max_new_tokens, history_state],
|
305 |
outputs=[response_output, history_state, chat_history_display]
|
306 |
)
|
307 |
-
|
308 |
clear_btn.click(
|
309 |
fn=clear_conversation,
|
310 |
inputs=[],
|
311 |
outputs=[prompt, history_state, chat_history_display]
|
312 |
)
|
313 |
-
|
314 |
return demo
|
315 |
|
316 |
-
#
|
317 |
-
print("Loading Snowflake-G0-Release model and tokenizer...")
|
318 |
try:
|
319 |
model, tokenizer, pipeline = load_model_and_tokenizer()
|
320 |
-
print("Model loaded successfully!")
|
321 |
except Exception as e:
|
322 |
print(f"Error loading model: {str(e)}")
|
323 |
-
# Create a simple error demo if model fails to load
|
324 |
with gr.Blocks(css=css) as error_demo:
|
325 |
gr.HTML(f"""
|
326 |
<div class="header" style="background-color: #ffebee;">
|
327 |
<h1><span class="snowflake-icon">⚠️</span> Error Loading Model</h1>
|
328 |
-
<p>There was a problem loading the
|
329 |
</div>
|
330 |
""")
|
331 |
demo = error_demo
|
332 |
-
|
333 |
-
|
334 |
-
demo = create_demo()
|
335 |
|
336 |
# Launch the app
|
337 |
if __name__ == "__main__":
|
|
|
2 |
import torch
|
3 |
import gradio as gr
|
4 |
from transformers import AutoTokenizer, AutoModelForCausalLM, TextGenerationPipeline
|
|
|
5 |
import datetime
|
6 |
|
7 |
# Model Constants
|
8 |
+
MODEL_ID = "./model" # Local folder containing model files
|
9 |
MAX_LENGTH = 384
|
10 |
TEMPERATURE_MIN = 0.1
|
11 |
TEMPERATURE_MAX = 2.0
|
|
|
69 |
}
|
70 |
"""
|
71 |
|
72 |
+
# Helper function to load model and tokenizer
|
73 |
def load_model_and_tokenizer():
|
74 |
+
global model, tokenizer, pipeline
|
75 |
|
76 |
+
print("Loading Snowflake-G0-Release model and tokenizer...")
|
|
|
77 |
|
78 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
|
79 |
+
|
80 |
if tokenizer.pad_token is None:
|
81 |
tokenizer.pad_token = tokenizer.eos_token
|
82 |
|
83 |
+
model = AutoModelForCausalLM.from_pretrained(
|
84 |
+
MODEL_ID,
|
85 |
+
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
86 |
+
device_map="auto"
|
87 |
+
)
|
88 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
pipeline = TextGenerationPipeline(
|
90 |
model=model,
|
91 |
tokenizer=tokenizer,
|
|
|
93 |
max_length=MAX_LENGTH
|
94 |
)
|
95 |
|
96 |
+
print("Model loaded successfully!")
|
97 |
return model, tokenizer, pipeline
|
98 |
|
99 |
# Helper functions for generation
|
|
|
108 |
if history is None:
|
109 |
history = []
|
110 |
|
|
|
111 |
history.append({"role": "user", "content": prompt})
|
112 |
+
|
113 |
try:
|
|
|
114 |
outputs = pipeline(
|
115 |
prompt,
|
116 |
do_sample=temperature > 0,
|
|
|
121 |
pad_token_id=tokenizer.pad_token_id,
|
122 |
num_return_sequences=1
|
123 |
)
|
124 |
+
|
125 |
response = outputs[0]["generated_text"]
|
|
|
|
|
126 |
history.append({"role": "assistant", "content": response})
|
127 |
+
|
|
|
128 |
formatted_history = []
|
129 |
for entry in history:
|
130 |
role_prefix = "👤 User: " if entry["role"] == "user" else "❄️ Snowflake: "
|
131 |
formatted_history.append(f"{role_prefix}{entry['content']}")
|
132 |
+
|
133 |
return response, history, "\n\n".join(formatted_history)
|
134 |
+
|
135 |
except Exception as e:
|
136 |
error_msg = f"Error generating response: {str(e)}"
|
137 |
history.append({"role": "assistant", "content": f"[ERROR] {error_msg}"})
|
|
|
152 |
"Create a dialogue between two AI researchers discussing the future of language models."
|
153 |
]
|
154 |
|
155 |
+
# Main app creation
|
156 |
def create_demo():
|
157 |
with gr.Blocks(css=css) as demo:
|
158 |
# Header
|
|
|
163 |
</div>
|
164 |
""")
|
165 |
|
166 |
+
# About accordion
|
167 |
with gr.Accordion("About Snowflake-G0-Release", open=False):
|
168 |
gr.Markdown("""
|
169 |
## Snowflake-G0-Release
|
170 |
|
171 |
+
Initial release of the Snowflake series trained on DialogMLM-50K.
|
172 |
|
173 |
+
### Model Details
|
174 |
- Architecture: SnowflakeCore
|
175 |
- Hidden size: 384
|
176 |
+
- Attention heads: 6
|
177 |
+
- Layers: 4
|
178 |
+
- Feed-forward dim: 768
|
179 |
+
- Max seq length: 384
|
180 |
- Vocabulary size: 30522 (BERT tokenizer)
|
181 |
|
182 |
+
### Features
|
183 |
+
- Memory-efficient
|
184 |
+
- Fused QKV for faster inference
|
185 |
+
- Pre-norm for stability
|
186 |
+
- Hugging Face compatible
|
187 |
""")
|
188 |
+
|
189 |
# Chat interface
|
190 |
with gr.Column():
|
191 |
chat_history_display = gr.Textbox(
|
|
|
195 |
max_lines=30,
|
196 |
interactive=False
|
197 |
)
|
|
|
|
|
198 |
history_state = gr.State([])
|
199 |
+
|
|
|
200 |
with gr.Row():
|
201 |
with gr.Column(scale=4):
|
202 |
prompt = gr.Textbox(
|
|
|
207 |
with gr.Column(scale=1):
|
208 |
submit_btn = gr.Button("Send", variant="primary")
|
209 |
clear_btn = gr.Button("Clear Conversation")
|
210 |
+
|
211 |
response_output = gr.Textbox(
|
212 |
value="",
|
213 |
label="Model Response",
|
|
|
215 |
max_lines=10,
|
216 |
interactive=False
|
217 |
)
|
218 |
+
|
219 |
+
# Generation Parameters
|
220 |
with gr.Accordion("Generation Parameters", open=False):
|
221 |
with gr.Column(elem_classes="parameter-section"):
|
222 |
with gr.Row():
|
|
|
226 |
maximum=TEMPERATURE_MAX,
|
227 |
value=TEMPERATURE_DEFAULT,
|
228 |
step=0.05,
|
229 |
+
label="Temperature"
|
|
|
230 |
)
|
|
|
231 |
top_p = gr.Slider(
|
232 |
minimum=TOP_P_MIN,
|
233 |
maximum=TOP_P_MAX,
|
234 |
value=TOP_P_DEFAULT,
|
235 |
step=0.05,
|
236 |
+
label="Top-p (nucleus sampling)"
|
|
|
237 |
)
|
|
|
238 |
with gr.Column():
|
239 |
top_k = gr.Slider(
|
240 |
minimum=TOP_K_MIN,
|
241 |
maximum=TOP_K_MAX,
|
242 |
value=TOP_K_DEFAULT,
|
243 |
step=1,
|
244 |
+
label="Top-k"
|
|
|
245 |
)
|
|
|
246 |
max_new_tokens = gr.Slider(
|
247 |
minimum=MAX_NEW_TOKENS_MIN,
|
248 |
maximum=MAX_NEW_TOKENS_MAX,
|
249 |
value=MAX_NEW_TOKENS_DEFAULT,
|
250 |
step=8,
|
251 |
+
label="Maximum New Tokens"
|
|
|
252 |
)
|
253 |
+
|
254 |
+
# Example Prompts
|
255 |
with gr.Accordion("Example Prompts", open=True):
|
256 |
with gr.Column(elem_classes="example-section"):
|
257 |
+
gr.Examples(
|
258 |
examples=examples,
|
259 |
inputs=prompt,
|
260 |
+
label="Click an example to try",
|
261 |
examples_per_page=5
|
262 |
)
|
263 |
+
|
264 |
# Footer
|
265 |
gr.HTML(f"""
|
266 |
<div class="footer">
|
267 |
<p>Snowflake-G0-Release Demo • Created with Gradio • {datetime.datetime.now().year}</p>
|
268 |
</div>
|
269 |
""")
|
270 |
+
|
271 |
+
# Interactions
|
272 |
submit_btn.click(
|
273 |
fn=generate_text,
|
274 |
inputs=[prompt, temperature, top_p, top_k, max_new_tokens, history_state],
|
275 |
outputs=[response_output, history_state, chat_history_display]
|
276 |
)
|
277 |
+
|
278 |
prompt.submit(
|
279 |
fn=generate_text,
|
280 |
inputs=[prompt, temperature, top_p, top_k, max_new_tokens, history_state],
|
281 |
outputs=[response_output, history_state, chat_history_display]
|
282 |
)
|
283 |
+
|
284 |
clear_btn.click(
|
285 |
fn=clear_conversation,
|
286 |
inputs=[],
|
287 |
outputs=[prompt, history_state, chat_history_display]
|
288 |
)
|
289 |
+
|
290 |
return demo
|
291 |
|
292 |
+
# Initialize model
|
|
|
293 |
try:
|
294 |
model, tokenizer, pipeline = load_model_and_tokenizer()
|
|
|
295 |
except Exception as e:
|
296 |
print(f"Error loading model: {str(e)}")
|
|
|
297 |
with gr.Blocks(css=css) as error_demo:
|
298 |
gr.HTML(f"""
|
299 |
<div class="header" style="background-color: #ffebee;">
|
300 |
<h1><span class="snowflake-icon">⚠️</span> Error Loading Model</h1>
|
301 |
+
<p>There was a problem loading the model: {str(e)}</p>
|
302 |
</div>
|
303 |
""")
|
304 |
demo = error_demo
|
305 |
+
else:
|
306 |
+
demo = create_demo()
|
|
|
307 |
|
308 |
# Launch the app
|
309 |
if __name__ == "__main__":
|