Dionyssos's picture
del Expressio
c63ff96
raw
history blame
17.5 kB
# -*- coding: utf-8 -*-
import typing
import gradio as gr
import numpy as np
import os
import torch
import torch.nn as nn
import audiofile
from tts import StyleTTS2
from textual import only_greek_or_only_latin, transliterate_number, fix_vocals
import audresample
import textwrap
import nltk
from audionar import VitsModel, VitsTokenizer
from audiocraft import AudioGen
audiogen = AudioGen().eval().to('cpu')
nltk.download('punkt', download_dir='./')
nltk.download('punkt_tab', download_dir='./')
nltk.data.path.append('.')
language_names = ['Ancient greek',
'English',
'Deutsch',
'French',
'Hungarian',
'Romanian',
'Serbian (Approx.)']
def audionar_tts(text=None,
lang='Romanian',
soundscape='',
cache_lim=24):
# https://huggingface.co/dkounadis/artificial-styletts2/blob/main/msinference.py
lang_map = {
'ancient greek': 'grc',
'english': 'eng',
'deutsch': 'deu',
'french': 'fra',
'hungarian': 'hun',
'romanian': 'ron',
'serbian (approx.)': 'rmc-script_latin',
}
final_audio = None
if text is None or text.strip() == '':
text = 'No Audio or Txt Input'
print(lang, lang in language_names)
if lang not in language_names: # StyleTTS2
text = only_greek_or_only_latin(text, lang='eng')
x = _tts.inference(text,
ref_s='wav/' + lang + '.wav')[0, 0, :].numpy() # 24 Khz
if x.shape[0] > 10:
x = audresample.resample(signal=x.astype(np.float32),
original_rate=24000,
target_rate=16000)[0, :] # 16 KHz
else: # VITS
lang_code = lang_map.get(lang.lower(), lang.lower().split()[0].strip())
global cached_lang_code, cached_net_g, cached_tokenizer
if 'cached_lang_code' not in globals() or cached_lang_code != lang_code:
cached_lang_code = lang_code
cached_net_g = VitsModel.from_pretrained(f'facebook/mms-tts-{lang_code}').eval()
cached_tokenizer = VitsTokenizer.from_pretrained(f'facebook/mms-tts-{lang_code}')
net_g = cached_net_g
tokenizer = cached_tokenizer
text = only_greek_or_only_latin(text, lang=lang_code)
text = transliterate_number(text, lang=lang_code)
text = fix_vocals(text, lang=lang_code)
sentences = textwrap.wrap(text, width=439)
total_audio_parts = []
for sentence in sentences:
inputs = cached_tokenizer(sentence, return_tensors="pt")
with torch.no_grad():
audio_part = cached_net_g(
input_ids=inputs.input_ids,
attention_mask=inputs.attention_mask,
lang_code=lang_code,
)[0, :]
total_audio_parts.append(audio_part)
x = torch.cat(total_audio_parts).cpu().numpy()
if soundscape and soundscape.strip():
speech_duration_secs = len(x) / 16000
target_duration = max(speech_duration_secs + 0.74, 2.0)
background_audio = audiogen.generate(
soundscape,
duration=target_duration,
cache_lim=max(4, int(cache_lim)) # at least allow 10 A/R stEps
).numpy()
# PAD
len_speech = len(speech_audio)
len_background = len(background_audio)
if len_background > len_speech:
padding = np.zeros(len_background - len_speech,
dtype=np.float32)
speech_audio = np.concatenate([speech_audio, padding])
elif len_speech > len_background:
padding = np.zeros(len_speech - len_background,
dtype=np.float32)
background_audio = np.concatenate([background_audio, padding])
speech_audio = speech_audio[None, :]
background_audio = background_audio[None, :]
final_audio = np.concatenate([
0.49 * speech_audio + 0.51 * background_audio,
0.51 * background_audio + 0.49 * speech_audio
], 0)
else:
final_audio = x
wavfile = '_vits_.wav'
audiofile.write(wavfile, final_audio, 16000)
return wavfile, wavfile # 2x file for [audio out & state to pass to the Emotion reco tAB]
# TTS
# VOICES = [f'wav/{vox}' for vox in os.listdir('wav')]
# add unidecode (to parse non-roman characters for the StyleTTS2
# # for the VITS it should better skip the unknown letters - dont use unidecode())
# at generation fill the state of "last tts"
# at record fill the state of "last record" and place in list of voice/langs for TTS
VOICES = ['jv_ID_google-gmu_04982.wav',
'it_IT_mls_1595.wav',
'en_US_vctk_p303.wav',
'en_US_vctk_p306.wav',
'it_IT_mls_8842.wav',
'en_US_cmu_arctic_ksp.wav',
'jv_ID_google-gmu_05970.wav',
'en_US_vctk_p318.wav',
'ha_NE_openbible.wav',
'ne_NP_ne-google_0883.wav',
'en_US_vctk_p280.wav',
'bn_multi_1010.wav',
'en_US_vctk_p259.wav',
'it_IT_mls_844.wav',
'en_US_vctk_p269.wav',
'en_US_vctk_p285.wav',
'de_DE_m-ailabs_angela_merkel.wav',
'en_US_vctk_p316.wav',
'en_US_vctk_p362.wav',
'jv_ID_google-gmu_06207.wav',
'tn_ZA_google-nwu_9061.wav',
'fr_FR_tom.wav',
'en_US_vctk_p233.wav',
'it_IT_mls_4975.wav',
'en_US_vctk_p236.wav',
'bn_multi_01232.wav',
'bn_multi_5958.wav',
'it_IT_mls_9185.wav',
'en_US_vctk_p248.wav',
'en_US_vctk_p287.wav',
'it_IT_mls_9772.wav',
'te_IN_cmu-indic_sk.wav',
'tn_ZA_google-nwu_8333.wav',
'en_US_vctk_p260.wav',
'en_US_vctk_p247.wav',
'en_US_vctk_p329.wav',
'en_US_cmu_arctic_fem.wav',
'en_US_cmu_arctic_rms.wav',
'en_US_vctk_p308.wav',
'jv_ID_google-gmu_08736.wav',
'en_US_vctk_p245.wav',
'fr_FR_m-ailabs_nadine_eckert_boulet.wav',
'jv_ID_google-gmu_03314.wav',
'en_US_vctk_p239.wav',
'jv_ID_google-gmu_05540.wav',
'it_IT_mls_7440.wav',
'en_US_vctk_p310.wav',
'en_US_vctk_p237.wav',
'en_US_hifi-tts_92.wav',
'en_US_cmu_arctic_aew.wav',
'ne_NP_ne-google_2099.wav',
'en_US_vctk_p226.wav',
'af_ZA_google-nwu_1919.wav',
'jv_ID_google-gmu_03727.wav',
'en_US_vctk_p317.wav',
'tn_ZA_google-nwu_0378.wav',
'nl_pmk.wav',
'en_US_vctk_p286.wav',
'tn_ZA_google-nwu_3342.wav',
# 'en_US_vctk_p343.wav',
'de_DE_m-ailabs_ramona_deininger.wav',
'jv_ID_google-gmu_03424.wav',
'en_US_vctk_p341.wav',
'jv_ID_google-gmu_03187.wav',
'ne_NP_ne-google_3960.wav',
'jv_ID_google-gmu_06080.wav',
'ne_NP_ne-google_3997.wav',
# 'en_US_vctk_p267.wav',
'en_US_vctk_p240.wav',
'ne_NP_ne-google_5687.wav',
'ne_NP_ne-google_9407.wav',
'jv_ID_google-gmu_05667.wav',
'jv_ID_google-gmu_01519.wav',
'ne_NP_ne-google_7957.wav',
'it_IT_mls_4705.wav',
'ne_NP_ne-google_6329.wav',
'it_IT_mls_1725.wav',
'tn_ZA_google-nwu_8914.wav',
'en_US_ljspeech.wav',
'tn_ZA_google-nwu_4850.wav',
'en_US_vctk_p238.wav',
'en_US_vctk_p302.wav',
'jv_ID_google-gmu_08178.wav',
'en_US_vctk_p313.wav',
'af_ZA_google-nwu_2418.wav',
'bn_multi_00737.wav',
'en_US_vctk_p275.wav', # y
'af_ZA_google-nwu_0184.wav',
'jv_ID_google-gmu_07638.wav',
'ne_NP_ne-google_6587.wav',
'ne_NP_ne-google_0258.wav',
'en_US_vctk_p232.wav',
'en_US_vctk_p336.wav',
'jv_ID_google-gmu_09039.wav',
'en_US_vctk_p312.wav',
'af_ZA_google-nwu_8148.wav',
'en_US_vctk_p326.wav',
'en_US_vctk_p264.wav',
'en_US_vctk_p295.wav',
# 'en_US_vctk_p298.wav',
'es_ES_m-ailabs_victor_villarraza.wav',
'pl_PL_m-ailabs_nina_brown.wav',
'tn_ZA_google-nwu_9365.wav',
'en_US_vctk_p294.wav',
'jv_ID_google-gmu_00658.wav',
'jv_ID_google-gmu_08305.wav',
'en_US_vctk_p330.wav',
'gu_IN_cmu-indic_cmu_indic_guj_dp.wav',
'jv_ID_google-gmu_05219.wav',
'en_US_vctk_p284.wav',
'de_DE_m-ailabs_eva_k.wav',
# 'bn_multi_00779.wav',
'en_UK_apope.wav',
'en_US_vctk_p345.wav',
'it_IT_mls_6744.wav',
'en_US_vctk_p347.wav',
'en_US_m-ailabs_mary_ann.wav',
'en_US_m-ailabs_elliot_miller.wav',
'en_US_vctk_p279.wav',
'ru_RU_multi_nikolaev.wav',
'bn_multi_4811.wav',
'tn_ZA_google-nwu_7693.wav',
'bn_multi_01701.wav',
'en_US_vctk_p262.wav',
# 'en_US_vctk_p266.wav',
'en_US_vctk_p243.wav',
'en_US_vctk_p297.wav',
'en_US_vctk_p278.wav',
'jv_ID_google-gmu_02059.wav',
'en_US_vctk_p231.wav',
'te_IN_cmu-indic_kpn.wav',
'en_US_vctk_p250.wav',
'it_IT_mls_4974.wav',
'en_US_cmu_arctic_awbrms.wav',
# 'en_US_vctk_p263.wav',
'nl_femal.wav',
'tn_ZA_google-nwu_6116.wav',
'jv_ID_google-gmu_06383.wav',
'en_US_vctk_p225.wav',
'en_US_vctk_p228.wav',
'it_IT_mls_277.wav',
'tn_ZA_google-nwu_7866.wav',
'en_US_vctk_p300.wav',
'ne_NP_ne-google_0649.wav',
'es_ES_carlfm.wav',
'jv_ID_google-gmu_06510.wav',
'de_DE_m-ailabs_rebecca_braunert_plunkett.wav',
'en_US_vctk_p340.wav',
'en_US_cmu_arctic_gka.wav',
'ne_NP_ne-google_2027.wav',
'jv_ID_google-gmu_09724.wav',
'en_US_vctk_p361.wav',
'ne_NP_ne-google_6834.wav',
'jv_ID_google-gmu_02326.wav',
'fr_FR_m-ailabs_zeckou.wav',
'tn_ZA_google-nwu_1932.wav',
# 'female-20-happy.wav',
'tn_ZA_google-nwu_1483.wav',
'de_DE_thorsten-emotion_amused.wav',
'ru_RU_multi_minaev.wav',
'sw_lanfrica.wav',
'en_US_vctk_p271.wav',
'tn_ZA_google-nwu_0441.wav',
'it_IT_mls_6001.wav',
'en_US_vctk_p305.wav',
'it_IT_mls_8828.wav',
'jv_ID_google-gmu_08002.wav',
'it_IT_mls_2033.wav',
'tn_ZA_google-nwu_3629.wav',
'it_IT_mls_6348.wav',
'en_US_cmu_arctic_axb.wav',
'it_IT_mls_8181.wav',
'en_US_vctk_p230.wav',
'af_ZA_google-nwu_7214.wav',
'nl_nathalie.wav',
'it_IT_mls_8207.wav',
'ko_KO_kss.wav',
'af_ZA_google-nwu_6590.wav',
'jv_ID_google-gmu_00264.wav',
'tn_ZA_google-nwu_6234.wav',
'jv_ID_google-gmu_05522.wav',
'en_US_cmu_arctic_lnh.wav',
'en_US_vctk_p272.wav',
'en_US_cmu_arctic_slp.wav',
'en_US_vctk_p299.wav',
'en_US_hifi-tts_9017.wav',
'it_IT_mls_4998.wav',
'it_IT_mls_6299.wav',
'en_US_cmu_arctic_rxr.wav',
'female-46-neutral.wav',
'jv_ID_google-gmu_01392.wav',
'tn_ZA_google-nwu_8512.wav',
'en_US_vctk_p244.wav',
# 'bn_multi_3108.wav',
# 'it_IT_mls_7405.wav',
# 'bn_multi_3713.wav',
# 'yo_openbible.wav',
# 'jv_ID_google-gmu_01932.wav',
'en_US_vctk_p270.wav',
'tn_ZA_google-nwu_6459.wav',
'bn_multi_4046.wav',
'en_US_vctk_p288.wav',
'en_US_vctk_p251.wav',
'es_ES_m-ailabs_tux.wav',
'tn_ZA_google-nwu_6206.wav',
'bn_multi_9169.wav',
# 'en_US_vctk_p293.wav',
# 'en_US_vctk_p255.wav',
'af_ZA_google-nwu_8963.wav',
# 'en_US_vctk_p265.wav',
'gu_IN_cmu-indic_cmu_indic_guj_ad.wav',
'jv_ID_google-gmu_07335.wav',
'en_US_vctk_p323.wav',
'en_US_vctk_p281.wav',
'en_US_cmu_arctic_bdl.wav',
'en_US_m-ailabs_judy_bieber.wav',
'it_IT_mls_10446.wav',
'en_US_vctk_p261.wav',
'en_US_vctk_p292.wav',
'te_IN_cmu-indic_ss.wav',
'en_US_vctk_p311.wav',
'it_IT_mls_12428.wav',
'en_US_cmu_arctic_aup.wav',
'jv_ID_google-gmu_04679.wav',
'it_IT_mls_4971.wav',
'en_US_cmu_arctic_ljm.wav',
'fa_haaniye.wav',
'en_US_vctk_p339.wav',
'tn_ZA_google-nwu_7896.wav',
'en_US_vctk_p253.wav',
'it_IT_mls_5421.wav',
# 'ne_NP_ne-google_0546.wav',
'vi_VN_vais1000.wav',
'en_US_vctk_p229.wav',
'en_US_vctk_p254.wav',
'en_US_vctk_p258.wav',
'it_IT_mls_7936.wav',
'en_US_vctk_p301.wav',
'tn_ZA_google-nwu_0045.wav',
'it_IT_mls_659.wav',
'tn_ZA_google-nwu_7674.wav',
'it_IT_mls_12804.wav',
'el_GR_rapunzelina.wav',
'en_US_hifi-tts_6097.wav',
'en_US_vctk_p257.wav',
'jv_ID_google-gmu_07875.wav',
'it_IT_mls_1157.wav',
'it_IT_mls_643.wav',
'en_US_vctk_p304.wav',
'ru_RU_multi_hajdurova.wav',
'it_IT_mls_8461.wav',
'bn_multi_3958.wav',
'it_IT_mls_1989.wav',
'en_US_vctk_p249.wav',
# 'bn_multi_0834.wav',
'en_US_vctk_p307.wav',
'es_ES_m-ailabs_karen_savage.wav',
'fr_FR_m-ailabs_bernard.wav',
'en_US_vctk_p252.wav',
'en_US_cmu_arctic_jmk.wav',
'en_US_vctk_p333.wav',
'tn_ZA_google-nwu_4506.wav',
'ne_NP_ne-google_0283.wav',
'de_DE_m-ailabs_karlsson.wav',
'en_US_cmu_arctic_awb.wav',
'en_US_vctk_p246.wav',
'en_US_cmu_arctic_clb.wav',
'en_US_vctk_p364.wav',
'nl_flemishguy.wav',
'en_US_vctk_p276.wav', # y
# 'en_US_vctk_p274.wav',
'fr_FR_m-ailabs_gilles_g_le_blanc.wav',
'it_IT_mls_7444.wav',
'style_o22050.wav',
'en_US_vctk_s5.wav',
'en_US_vctk_p268.wav',
'it_IT_mls_6807.wav',
'it_IT_mls_2019.wav',
'male-60-angry.wav',
'af_ZA_google-nwu_8924.wav',
'en_US_vctk_p374.wav',
'en_US_vctk_p363.wav',
'it_IT_mls_644.wav',
'ne_NP_ne-google_3614.wav',
'en_US_vctk_p241.wav',
'ne_NP_ne-google_3154.wav',
'en_US_vctk_p234.wav',
'it_IT_mls_8384.wav',
'fr_FR_m-ailabs_ezwa.wav',
'it_IT_mls_5010.wav',
'en_US_vctk_p351.wav',
'en_US_cmu_arctic_eey.wav',
'jv_ID_google-gmu_04285.wav',
'jv_ID_google-gmu_06941.wav',
'hu_HU_diana-majlinger.wav',
'tn_ZA_google-nwu_2839.wav',
'bn_multi_03042.wav',
'tn_ZA_google-nwu_5628.wav',
'it_IT_mls_4649.wav',
'af_ZA_google-nwu_7130.wav',
'en_US_cmu_arctic_slt.wav',
'jv_ID_google-gmu_04175.wav',
'gu_IN_cmu-indic_cmu_indic_guj_kt.wav',
'jv_ID_google-gmu_00027.wav',
'jv_ID_google-gmu_02884.wav',
'en_US_vctk_p360.wav',
'en_US_vctk_p334.wav',
'male-27-sad.wav',
'tn_ZA_google-nwu_1498.wav',
'fi_FI_harri-tapani-ylilammi.wav',
'bn_multi_rm.wav',
'ne_NP_ne-google_2139.wav',
'pl_PL_m-ailabs_piotr_nater.wav',
'fr_FR_siwis.wav',
'nl_bart-de-leeuw.wav',
'jv_ID_google-gmu_04715.wav',
'en_US_vctk_p283.wav',
'en_US_vctk_p314.wav',
'en_US_vctk_p335.wav',
'jv_ID_google-gmu_07765.wav',
'en_US_vctk_p273.wav'
]
VOICES = [t[:-4] for t in VOICES] # crop .wav for visuals in gr.DropDown
_tts = StyleTTS2().to('cpu')
with gr.Blocks(theme='huggingface') as demo:
with gr.Tab(label="TTS"):
with gr.Row():
text_input = gr.Textbox(
label="Type text for TTS:",
placeholder="Type Text for TTS",
lines=4,
value="Farover the misty mountains cold too dungeons deep and caverns old.",
)
choice_dropdown = gr.Dropdown(
choices=language_names + VOICES,
label="Select Voice or Language",
value=VOICES[0]
)
soundscape_input = gr.Textbox(
lines=1,
value="frogs",
label="AudioGen Txt"
)
kv_input = gr.Number(
label="kv Period",
value=24,
)
generate_button = gr.Button("Generate Audio", variant="primary")
output_audio = gr.Audio(label="TTS Output")
generate_button.click(
fn=audionar_tts,
inputs=[text_input, choice_dropdown, soundscape_input, kv_input],
outputs=[output_audio]
)
with gr.Tab(label="API"):
with gr.Row():
with gr.Column():
gr.Markdown("Only the first two seconds of the audio will be processed.")
demo.launch(debug=True)