File size: 17,515 Bytes
1c1f53d
ad493ec
 
 
1c1f53d
ad493ec
 
 
1c1f53d
c63ff96
ad493ec
0213c67
 
a77742c
737edba
 
 
 
 
0213c67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c63ff96
737edba
 
0213c67
 
 
 
737edba
 
 
 
 
 
 
 
 
0213c67
 
c63ff96
0213c67
 
c63ff96
 
0213c67
 
c63ff96
0213c67
c63ff96
0213c67
c63ff96
737edba
c63ff96
 
 
 
737edba
c63ff96
 
 
0213c67
c63ff96
 
 
ad493ec
c63ff96
ad493ec
c63ff96
 
 
 
ad493ec
c63ff96
 
 
 
 
ad493ec
 
c63ff96
ad493ec
c63ff96
 
 
 
 
 
 
 
 
 
ad493ec
c63ff96
ad493ec
 
c63ff96
1c1f53d
c63ff96
 
 
ad493ec
fb65e18
c63ff96
 
 
 
 
ad493ec
c63ff96
 
 
 
 
 
 
 
 
 
 
 
 
4d8c40c
fb65e18
c63ff96
 
fb65e18
ad493ec
c63ff96
 
 
 
1c1f53d
c63ff96
 
 
ad493ec
4d8c40c
c63ff96
 
 
4d8c40c
 
 
 
 
 
1c1f53d
 
737edba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
059ae13
737edba
1c1f53d
 
ad493ec
d04a553
6c9a684
51196f8
 
059ae13
 
51196f8
 
 
059ae13
 
 
9b2426f
059ae13
 
 
 
 
ad926ab
737edba
 
 
 
51196f8
 
1c1f53d
51196f8
 
c63ff96
 
 
51196f8
9b2426f
c63ff96
ad493ec
 
c63ff96
17a3ebf
ad493ec
9b2426f
 
17a3ebf
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
# -*- coding: utf-8 -*-
import typing
import gradio as gr
import numpy as np
import os
import torch
import torch.nn as nn
import audiofile
from tts import StyleTTS2
from textual import only_greek_or_only_latin, transliterate_number, fix_vocals
import audresample
import textwrap
import nltk
from audionar import VitsModel, VitsTokenizer
from audiocraft import AudioGen



audiogen = AudioGen().eval().to('cpu')

nltk.download('punkt', download_dir='./')
nltk.download('punkt_tab', download_dir='./')
nltk.data.path.append('.')






language_names = ['Ancient greek',
                  'English',
                  'Deutsch',
                  'French',
                  'Hungarian',
                  'Romanian',
                  'Serbian (Approx.)']


def audionar_tts(text=None,
                 lang='Romanian',
                 soundscape='',
                 cache_lim=24):

    # https://huggingface.co/dkounadis/artificial-styletts2/blob/main/msinference.py


    lang_map = {
            'ancient greek': 'grc',
            'english': 'eng',
            'deutsch': 'deu',
            'french': 'fra',
            'hungarian': 'hun',
            'romanian': 'ron',
            'serbian (approx.)': 'rmc-script_latin',
        }


    final_audio = None


    if text is None or text.strip() == '':
        text = 'No Audio or Txt Input'


    print(lang, lang in language_names)

    if lang not in language_names:  # StyleTTS2
        
        text = only_greek_or_only_latin(text, lang='eng')

        x = _tts.inference(text,
                           ref_s='wav/' + lang + '.wav')[0, 0, :].numpy()  # 24 Khz
        
        if x.shape[0] > 10:

            x = audresample.resample(signal=x.astype(np.float32),
                                     original_rate=24000,
                                     target_rate=16000)[0, :]   # 16 KHz
    
    else:  # VITS
        
        lang_code = lang_map.get(lang.lower(), lang.lower().split()[0].strip())

        global cached_lang_code, cached_net_g, cached_tokenizer

        if 'cached_lang_code' not in globals() or cached_lang_code != lang_code:
            cached_lang_code = lang_code
            cached_net_g = VitsModel.from_pretrained(f'facebook/mms-tts-{lang_code}').eval()
            cached_tokenizer = VitsTokenizer.from_pretrained(f'facebook/mms-tts-{lang_code}')

        net_g = cached_net_g
        tokenizer = cached_tokenizer
        text = only_greek_or_only_latin(text, lang=lang_code)
        text = transliterate_number(text, lang=lang_code)
        text = fix_vocals(text, lang=lang_code)


        sentences = textwrap.wrap(text, width=439)

        total_audio_parts = []
        for sentence in sentences:
            inputs = cached_tokenizer(sentence, return_tensors="pt")
            with torch.no_grad():
                audio_part = cached_net_g(
                    input_ids=inputs.input_ids,
                    attention_mask=inputs.attention_mask,
                    lang_code=lang_code,
                )[0, :]
            total_audio_parts.append(audio_part)

        x = torch.cat(total_audio_parts).cpu().numpy()


    if soundscape and soundscape.strip():

        
        speech_duration_secs = len(x) / 16000
        target_duration = max(speech_duration_secs + 0.74, 2.0)


        background_audio = audiogen.generate(
            soundscape,
            duration=target_duration,
            cache_lim=max(4, int(cache_lim))  # at least allow 10 A/R stEps
         ).numpy()

        # PAD
        
        len_speech = len(speech_audio)
        len_background = len(background_audio)
        
        if len_background > len_speech:
            padding = np.zeros(len_background - len_speech,
                                dtype=np.float32)
            speech_audio = np.concatenate([speech_audio, padding])
        elif len_speech > len_background:
            padding = np.zeros(len_speech - len_background,
                                dtype=np.float32)
            background_audio = np.concatenate([background_audio, padding])


        speech_audio = speech_audio[None, :]
        background_audio = background_audio[None, :]


        final_audio = np.concatenate([
            0.49 * speech_audio + 0.51 * background_audio,
            0.51 * background_audio + 0.49 * speech_audio
        ], 0)
    
    else:
        
        final_audio = x    


    wavfile = '_vits_.wav'
    audiofile.write(wavfile, final_audio, 16000)    
    return wavfile, wavfile  # 2x file for [audio out & state to pass to the Emotion reco tAB]







# TTS
# VOICES = [f'wav/{vox}' for vox in os.listdir('wav')]
# add unidecode (to parse non-roman characters for the StyleTTS2 
# # for the VITS it should better skip the unknown letters - dont use unidecode())
# at generation fill the state of "last tts"
#    at record fill the state of "last record" and place in list of voice/langs for TTS
VOICES = ['jv_ID_google-gmu_04982.wav', 
        'it_IT_mls_1595.wav', 
        'en_US_vctk_p303.wav', 
        'en_US_vctk_p306.wav', 
        'it_IT_mls_8842.wav', 
        'en_US_cmu_arctic_ksp.wav', 
        'jv_ID_google-gmu_05970.wav', 
        'en_US_vctk_p318.wav', 
        'ha_NE_openbible.wav', 
        'ne_NP_ne-google_0883.wav', 
        'en_US_vctk_p280.wav', 
        'bn_multi_1010.wav', 
        'en_US_vctk_p259.wav', 
        'it_IT_mls_844.wav', 
        'en_US_vctk_p269.wav', 
        'en_US_vctk_p285.wav', 
        'de_DE_m-ailabs_angela_merkel.wav', 
        'en_US_vctk_p316.wav', 
        'en_US_vctk_p362.wav', 
        'jv_ID_google-gmu_06207.wav', 
        'tn_ZA_google-nwu_9061.wav', 
        'fr_FR_tom.wav', 
        'en_US_vctk_p233.wav', 
        'it_IT_mls_4975.wav', 
        'en_US_vctk_p236.wav', 
        'bn_multi_01232.wav', 
        'bn_multi_5958.wav', 
        'it_IT_mls_9185.wav', 
        'en_US_vctk_p248.wav', 
        'en_US_vctk_p287.wav', 
        'it_IT_mls_9772.wav', 
        'te_IN_cmu-indic_sk.wav', 
        'tn_ZA_google-nwu_8333.wav', 
        'en_US_vctk_p260.wav', 
        'en_US_vctk_p247.wav', 
        'en_US_vctk_p329.wav', 
        'en_US_cmu_arctic_fem.wav', 
        'en_US_cmu_arctic_rms.wav', 
        'en_US_vctk_p308.wav', 
        'jv_ID_google-gmu_08736.wav', 
        'en_US_vctk_p245.wav', 
        'fr_FR_m-ailabs_nadine_eckert_boulet.wav', 
        'jv_ID_google-gmu_03314.wav', 
        'en_US_vctk_p239.wav', 
        'jv_ID_google-gmu_05540.wav', 
        'it_IT_mls_7440.wav', 
        'en_US_vctk_p310.wav', 
        'en_US_vctk_p237.wav', 
        'en_US_hifi-tts_92.wav', 
        'en_US_cmu_arctic_aew.wav', 
        'ne_NP_ne-google_2099.wav', 
        'en_US_vctk_p226.wav', 
        'af_ZA_google-nwu_1919.wav', 
        'jv_ID_google-gmu_03727.wav', 
        'en_US_vctk_p317.wav', 
        'tn_ZA_google-nwu_0378.wav', 
        'nl_pmk.wav', 
        'en_US_vctk_p286.wav', 
        'tn_ZA_google-nwu_3342.wav', 
        # 'en_US_vctk_p343.wav', 
        'de_DE_m-ailabs_ramona_deininger.wav', 
        'jv_ID_google-gmu_03424.wav', 
        'en_US_vctk_p341.wav', 
        'jv_ID_google-gmu_03187.wav', 
        'ne_NP_ne-google_3960.wav', 
        'jv_ID_google-gmu_06080.wav', 
        'ne_NP_ne-google_3997.wav', 
        # 'en_US_vctk_p267.wav', 
        'en_US_vctk_p240.wav', 
        'ne_NP_ne-google_5687.wav', 
        'ne_NP_ne-google_9407.wav', 
        'jv_ID_google-gmu_05667.wav', 
        'jv_ID_google-gmu_01519.wav', 
        'ne_NP_ne-google_7957.wav', 
        'it_IT_mls_4705.wav', 
        'ne_NP_ne-google_6329.wav', 
        'it_IT_mls_1725.wav', 
        'tn_ZA_google-nwu_8914.wav', 
        'en_US_ljspeech.wav', 
        'tn_ZA_google-nwu_4850.wav', 
        'en_US_vctk_p238.wav', 
        'en_US_vctk_p302.wav', 
        'jv_ID_google-gmu_08178.wav', 
        'en_US_vctk_p313.wav', 
        'af_ZA_google-nwu_2418.wav', 
        'bn_multi_00737.wav', 
        'en_US_vctk_p275.wav', # y
        'af_ZA_google-nwu_0184.wav', 
        'jv_ID_google-gmu_07638.wav', 
        'ne_NP_ne-google_6587.wav', 
        'ne_NP_ne-google_0258.wav', 
        'en_US_vctk_p232.wav', 
        'en_US_vctk_p336.wav', 
        'jv_ID_google-gmu_09039.wav', 
        'en_US_vctk_p312.wav', 
        'af_ZA_google-nwu_8148.wav', 
        'en_US_vctk_p326.wav', 
        'en_US_vctk_p264.wav', 
        'en_US_vctk_p295.wav', 
        # 'en_US_vctk_p298.wav', 
        'es_ES_m-ailabs_victor_villarraza.wav', 
        'pl_PL_m-ailabs_nina_brown.wav', 
        'tn_ZA_google-nwu_9365.wav', 
        'en_US_vctk_p294.wav', 
        'jv_ID_google-gmu_00658.wav', 
        'jv_ID_google-gmu_08305.wav', 
        'en_US_vctk_p330.wav', 
        'gu_IN_cmu-indic_cmu_indic_guj_dp.wav', 
        'jv_ID_google-gmu_05219.wav', 
        'en_US_vctk_p284.wav', 
        'de_DE_m-ailabs_eva_k.wav', 
        # 'bn_multi_00779.wav', 
        'en_UK_apope.wav', 
        'en_US_vctk_p345.wav', 
        'it_IT_mls_6744.wav', 
        'en_US_vctk_p347.wav', 
        'en_US_m-ailabs_mary_ann.wav', 
        'en_US_m-ailabs_elliot_miller.wav', 
        'en_US_vctk_p279.wav', 
        'ru_RU_multi_nikolaev.wav', 
        'bn_multi_4811.wav', 
        'tn_ZA_google-nwu_7693.wav', 
        'bn_multi_01701.wav', 
        'en_US_vctk_p262.wav', 
        # 'en_US_vctk_p266.wav', 
        'en_US_vctk_p243.wav', 
        'en_US_vctk_p297.wav', 
        'en_US_vctk_p278.wav', 
        'jv_ID_google-gmu_02059.wav', 
        'en_US_vctk_p231.wav', 
        'te_IN_cmu-indic_kpn.wav', 
        'en_US_vctk_p250.wav', 
        'it_IT_mls_4974.wav', 
        'en_US_cmu_arctic_awbrms.wav', 
        # 'en_US_vctk_p263.wav', 
        'nl_femal.wav', 
        'tn_ZA_google-nwu_6116.wav', 
        'jv_ID_google-gmu_06383.wav', 
        'en_US_vctk_p225.wav', 
        'en_US_vctk_p228.wav', 
        'it_IT_mls_277.wav', 
        'tn_ZA_google-nwu_7866.wav', 
        'en_US_vctk_p300.wav', 
        'ne_NP_ne-google_0649.wav', 
        'es_ES_carlfm.wav', 
        'jv_ID_google-gmu_06510.wav', 
        'de_DE_m-ailabs_rebecca_braunert_plunkett.wav', 
        'en_US_vctk_p340.wav', 
        'en_US_cmu_arctic_gka.wav', 
        'ne_NP_ne-google_2027.wav', 
        'jv_ID_google-gmu_09724.wav', 
        'en_US_vctk_p361.wav', 
        'ne_NP_ne-google_6834.wav', 
        'jv_ID_google-gmu_02326.wav', 
        'fr_FR_m-ailabs_zeckou.wav', 
        'tn_ZA_google-nwu_1932.wav', 
        # 'female-20-happy.wav', 
        'tn_ZA_google-nwu_1483.wav', 
        'de_DE_thorsten-emotion_amused.wav', 
        'ru_RU_multi_minaev.wav', 
        'sw_lanfrica.wav', 
        'en_US_vctk_p271.wav', 
        'tn_ZA_google-nwu_0441.wav', 
        'it_IT_mls_6001.wav', 
        'en_US_vctk_p305.wav', 
        'it_IT_mls_8828.wav', 
        'jv_ID_google-gmu_08002.wav', 
        'it_IT_mls_2033.wav', 
        'tn_ZA_google-nwu_3629.wav', 
        'it_IT_mls_6348.wav', 
        'en_US_cmu_arctic_axb.wav', 
        'it_IT_mls_8181.wav', 
        'en_US_vctk_p230.wav', 
        'af_ZA_google-nwu_7214.wav', 
        'nl_nathalie.wav', 
        'it_IT_mls_8207.wav', 
        'ko_KO_kss.wav', 
        'af_ZA_google-nwu_6590.wav', 
        'jv_ID_google-gmu_00264.wav', 
        'tn_ZA_google-nwu_6234.wav', 
        'jv_ID_google-gmu_05522.wav', 
        'en_US_cmu_arctic_lnh.wav', 
        'en_US_vctk_p272.wav', 
        'en_US_cmu_arctic_slp.wav', 
        'en_US_vctk_p299.wav', 
        'en_US_hifi-tts_9017.wav', 
        'it_IT_mls_4998.wav', 
        'it_IT_mls_6299.wav', 
        'en_US_cmu_arctic_rxr.wav', 
        'female-46-neutral.wav', 
        'jv_ID_google-gmu_01392.wav', 
        'tn_ZA_google-nwu_8512.wav', 
        'en_US_vctk_p244.wav', 
        # 'bn_multi_3108.wav', 
        # 'it_IT_mls_7405.wav', 
        # 'bn_multi_3713.wav', 
        # 'yo_openbible.wav', 
        # 'jv_ID_google-gmu_01932.wav', 
        'en_US_vctk_p270.wav', 
        'tn_ZA_google-nwu_6459.wav', 
        'bn_multi_4046.wav', 
        'en_US_vctk_p288.wav', 
        'en_US_vctk_p251.wav', 
        'es_ES_m-ailabs_tux.wav', 
        'tn_ZA_google-nwu_6206.wav', 
        'bn_multi_9169.wav', 
        # 'en_US_vctk_p293.wav', 
        # 'en_US_vctk_p255.wav', 
        'af_ZA_google-nwu_8963.wav',
        # 'en_US_vctk_p265.wav', 
        'gu_IN_cmu-indic_cmu_indic_guj_ad.wav', 
        'jv_ID_google-gmu_07335.wav', 
        'en_US_vctk_p323.wav', 
        'en_US_vctk_p281.wav', 
        'en_US_cmu_arctic_bdl.wav', 
        'en_US_m-ailabs_judy_bieber.wav', 
        'it_IT_mls_10446.wav', 
        'en_US_vctk_p261.wav', 
        'en_US_vctk_p292.wav', 
        'te_IN_cmu-indic_ss.wav', 
        'en_US_vctk_p311.wav', 
        'it_IT_mls_12428.wav', 
        'en_US_cmu_arctic_aup.wav', 
        'jv_ID_google-gmu_04679.wav', 
        'it_IT_mls_4971.wav', 
        'en_US_cmu_arctic_ljm.wav', 
        'fa_haaniye.wav', 
        'en_US_vctk_p339.wav', 
        'tn_ZA_google-nwu_7896.wav', 
        'en_US_vctk_p253.wav', 
        'it_IT_mls_5421.wav', 
        # 'ne_NP_ne-google_0546.wav', 
        'vi_VN_vais1000.wav', 
        'en_US_vctk_p229.wav', 
        'en_US_vctk_p254.wav', 
        'en_US_vctk_p258.wav', 
        'it_IT_mls_7936.wav', 
        'en_US_vctk_p301.wav', 
        'tn_ZA_google-nwu_0045.wav', 
        'it_IT_mls_659.wav', 
        'tn_ZA_google-nwu_7674.wav', 
        'it_IT_mls_12804.wav', 
        'el_GR_rapunzelina.wav', 
        'en_US_hifi-tts_6097.wav', 
        'en_US_vctk_p257.wav', 
        'jv_ID_google-gmu_07875.wav', 
        'it_IT_mls_1157.wav', 
        'it_IT_mls_643.wav', 
        'en_US_vctk_p304.wav', 
        'ru_RU_multi_hajdurova.wav', 
        'it_IT_mls_8461.wav', 
        'bn_multi_3958.wav', 
        'it_IT_mls_1989.wav', 
        'en_US_vctk_p249.wav', 
        # 'bn_multi_0834.wav', 
        'en_US_vctk_p307.wav', 
        'es_ES_m-ailabs_karen_savage.wav', 
        'fr_FR_m-ailabs_bernard.wav', 
        'en_US_vctk_p252.wav', 
        'en_US_cmu_arctic_jmk.wav', 
        'en_US_vctk_p333.wav', 
        'tn_ZA_google-nwu_4506.wav', 
        'ne_NP_ne-google_0283.wav', 
        'de_DE_m-ailabs_karlsson.wav', 
        'en_US_cmu_arctic_awb.wav', 
        'en_US_vctk_p246.wav', 
        'en_US_cmu_arctic_clb.wav', 
        'en_US_vctk_p364.wav', 
        'nl_flemishguy.wav', 
        'en_US_vctk_p276.wav', # y
        # 'en_US_vctk_p274.wav', 
        'fr_FR_m-ailabs_gilles_g_le_blanc.wav', 
        'it_IT_mls_7444.wav', 
        'style_o22050.wav', 
        'en_US_vctk_s5.wav', 
        'en_US_vctk_p268.wav', 
        'it_IT_mls_6807.wav', 
        'it_IT_mls_2019.wav', 
        'male-60-angry.wav', 
        'af_ZA_google-nwu_8924.wav', 
        'en_US_vctk_p374.wav', 
        'en_US_vctk_p363.wav', 
        'it_IT_mls_644.wav', 
        'ne_NP_ne-google_3614.wav', 
        'en_US_vctk_p241.wav', 
        'ne_NP_ne-google_3154.wav', 
        'en_US_vctk_p234.wav', 
        'it_IT_mls_8384.wav', 
        'fr_FR_m-ailabs_ezwa.wav', 
        'it_IT_mls_5010.wav', 
        'en_US_vctk_p351.wav', 
        'en_US_cmu_arctic_eey.wav', 
        'jv_ID_google-gmu_04285.wav', 
        'jv_ID_google-gmu_06941.wav', 
        'hu_HU_diana-majlinger.wav', 
        'tn_ZA_google-nwu_2839.wav', 
        'bn_multi_03042.wav', 
        'tn_ZA_google-nwu_5628.wav', 
        'it_IT_mls_4649.wav', 
        'af_ZA_google-nwu_7130.wav', 
        'en_US_cmu_arctic_slt.wav', 
        'jv_ID_google-gmu_04175.wav', 
        'gu_IN_cmu-indic_cmu_indic_guj_kt.wav', 
        'jv_ID_google-gmu_00027.wav', 
        'jv_ID_google-gmu_02884.wav', 
        'en_US_vctk_p360.wav', 
        'en_US_vctk_p334.wav', 
        'male-27-sad.wav', 
        'tn_ZA_google-nwu_1498.wav', 
        'fi_FI_harri-tapani-ylilammi.wav', 
        'bn_multi_rm.wav', 
        'ne_NP_ne-google_2139.wav', 
        'pl_PL_m-ailabs_piotr_nater.wav', 
        'fr_FR_siwis.wav', 
        'nl_bart-de-leeuw.wav', 
        'jv_ID_google-gmu_04715.wav', 
        'en_US_vctk_p283.wav', 
        'en_US_vctk_p314.wav', 
        'en_US_vctk_p335.wav', 
        'jv_ID_google-gmu_07765.wav', 
        'en_US_vctk_p273.wav'
        ]
VOICES = [t[:-4] for t in VOICES]  # crop .wav for visuals in gr.DropDown

_tts = StyleTTS2().to('cpu')


with gr.Blocks(theme='huggingface') as demo:
    with gr.Tab(label="TTS"):
        with gr.Row():
            text_input = gr.Textbox(
                label="Type text for TTS:",
                placeholder="Type Text for TTS",
                lines=4,
                value="Farover the misty mountains cold too dungeons deep and caverns old.",
            )
            choice_dropdown = gr.Dropdown(
                choices=language_names + VOICES,
                label="Select Voice or Language",
                value=VOICES[0]
            )
            soundscape_input = gr.Textbox(
                lines=1,
                value="frogs",
                label="AudioGen Txt"
            )
            kv_input = gr.Number(
                label="kv Period",
                value=24,
            )
            generate_button = gr.Button("Generate Audio", variant="primary")

        output_audio = gr.Audio(label="TTS Output")

        generate_button.click(
            fn=audionar_tts,
            inputs=[text_input, choice_dropdown, soundscape_input, kv_input],
            outputs=[output_audio]
        )

    with gr.Tab(label="API"):
        with gr.Row():
            with gr.Column():

                
                gr.Markdown("Only the first two seconds of the audio will be processed.")


demo.launch(debug=True)