Spaces:
Running
Running
File size: 17,515 Bytes
1c1f53d ad493ec 1c1f53d ad493ec 1c1f53d c63ff96 ad493ec 0213c67 a77742c 737edba 0213c67 c63ff96 737edba 0213c67 737edba 0213c67 c63ff96 0213c67 c63ff96 0213c67 c63ff96 0213c67 c63ff96 0213c67 c63ff96 737edba c63ff96 737edba c63ff96 0213c67 c63ff96 ad493ec c63ff96 ad493ec c63ff96 ad493ec c63ff96 ad493ec c63ff96 ad493ec c63ff96 ad493ec c63ff96 ad493ec c63ff96 1c1f53d c63ff96 ad493ec fb65e18 c63ff96 ad493ec c63ff96 4d8c40c fb65e18 c63ff96 fb65e18 ad493ec c63ff96 1c1f53d c63ff96 ad493ec 4d8c40c c63ff96 4d8c40c 1c1f53d 737edba 059ae13 737edba 1c1f53d ad493ec d04a553 6c9a684 51196f8 059ae13 51196f8 059ae13 9b2426f 059ae13 ad926ab 737edba 51196f8 1c1f53d 51196f8 c63ff96 51196f8 9b2426f c63ff96 ad493ec c63ff96 17a3ebf ad493ec 9b2426f 17a3ebf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 |
# -*- coding: utf-8 -*-
import typing
import gradio as gr
import numpy as np
import os
import torch
import torch.nn as nn
import audiofile
from tts import StyleTTS2
from textual import only_greek_or_only_latin, transliterate_number, fix_vocals
import audresample
import textwrap
import nltk
from audionar import VitsModel, VitsTokenizer
from audiocraft import AudioGen
audiogen = AudioGen().eval().to('cpu')
nltk.download('punkt', download_dir='./')
nltk.download('punkt_tab', download_dir='./')
nltk.data.path.append('.')
language_names = ['Ancient greek',
'English',
'Deutsch',
'French',
'Hungarian',
'Romanian',
'Serbian (Approx.)']
def audionar_tts(text=None,
lang='Romanian',
soundscape='',
cache_lim=24):
# https://huggingface.co/dkounadis/artificial-styletts2/blob/main/msinference.py
lang_map = {
'ancient greek': 'grc',
'english': 'eng',
'deutsch': 'deu',
'french': 'fra',
'hungarian': 'hun',
'romanian': 'ron',
'serbian (approx.)': 'rmc-script_latin',
}
final_audio = None
if text is None or text.strip() == '':
text = 'No Audio or Txt Input'
print(lang, lang in language_names)
if lang not in language_names: # StyleTTS2
text = only_greek_or_only_latin(text, lang='eng')
x = _tts.inference(text,
ref_s='wav/' + lang + '.wav')[0, 0, :].numpy() # 24 Khz
if x.shape[0] > 10:
x = audresample.resample(signal=x.astype(np.float32),
original_rate=24000,
target_rate=16000)[0, :] # 16 KHz
else: # VITS
lang_code = lang_map.get(lang.lower(), lang.lower().split()[0].strip())
global cached_lang_code, cached_net_g, cached_tokenizer
if 'cached_lang_code' not in globals() or cached_lang_code != lang_code:
cached_lang_code = lang_code
cached_net_g = VitsModel.from_pretrained(f'facebook/mms-tts-{lang_code}').eval()
cached_tokenizer = VitsTokenizer.from_pretrained(f'facebook/mms-tts-{lang_code}')
net_g = cached_net_g
tokenizer = cached_tokenizer
text = only_greek_or_only_latin(text, lang=lang_code)
text = transliterate_number(text, lang=lang_code)
text = fix_vocals(text, lang=lang_code)
sentences = textwrap.wrap(text, width=439)
total_audio_parts = []
for sentence in sentences:
inputs = cached_tokenizer(sentence, return_tensors="pt")
with torch.no_grad():
audio_part = cached_net_g(
input_ids=inputs.input_ids,
attention_mask=inputs.attention_mask,
lang_code=lang_code,
)[0, :]
total_audio_parts.append(audio_part)
x = torch.cat(total_audio_parts).cpu().numpy()
if soundscape and soundscape.strip():
speech_duration_secs = len(x) / 16000
target_duration = max(speech_duration_secs + 0.74, 2.0)
background_audio = audiogen.generate(
soundscape,
duration=target_duration,
cache_lim=max(4, int(cache_lim)) # at least allow 10 A/R stEps
).numpy()
# PAD
len_speech = len(speech_audio)
len_background = len(background_audio)
if len_background > len_speech:
padding = np.zeros(len_background - len_speech,
dtype=np.float32)
speech_audio = np.concatenate([speech_audio, padding])
elif len_speech > len_background:
padding = np.zeros(len_speech - len_background,
dtype=np.float32)
background_audio = np.concatenate([background_audio, padding])
speech_audio = speech_audio[None, :]
background_audio = background_audio[None, :]
final_audio = np.concatenate([
0.49 * speech_audio + 0.51 * background_audio,
0.51 * background_audio + 0.49 * speech_audio
], 0)
else:
final_audio = x
wavfile = '_vits_.wav'
audiofile.write(wavfile, final_audio, 16000)
return wavfile, wavfile # 2x file for [audio out & state to pass to the Emotion reco tAB]
# TTS
# VOICES = [f'wav/{vox}' for vox in os.listdir('wav')]
# add unidecode (to parse non-roman characters for the StyleTTS2
# # for the VITS it should better skip the unknown letters - dont use unidecode())
# at generation fill the state of "last tts"
# at record fill the state of "last record" and place in list of voice/langs for TTS
VOICES = ['jv_ID_google-gmu_04982.wav',
'it_IT_mls_1595.wav',
'en_US_vctk_p303.wav',
'en_US_vctk_p306.wav',
'it_IT_mls_8842.wav',
'en_US_cmu_arctic_ksp.wav',
'jv_ID_google-gmu_05970.wav',
'en_US_vctk_p318.wav',
'ha_NE_openbible.wav',
'ne_NP_ne-google_0883.wav',
'en_US_vctk_p280.wav',
'bn_multi_1010.wav',
'en_US_vctk_p259.wav',
'it_IT_mls_844.wav',
'en_US_vctk_p269.wav',
'en_US_vctk_p285.wav',
'de_DE_m-ailabs_angela_merkel.wav',
'en_US_vctk_p316.wav',
'en_US_vctk_p362.wav',
'jv_ID_google-gmu_06207.wav',
'tn_ZA_google-nwu_9061.wav',
'fr_FR_tom.wav',
'en_US_vctk_p233.wav',
'it_IT_mls_4975.wav',
'en_US_vctk_p236.wav',
'bn_multi_01232.wav',
'bn_multi_5958.wav',
'it_IT_mls_9185.wav',
'en_US_vctk_p248.wav',
'en_US_vctk_p287.wav',
'it_IT_mls_9772.wav',
'te_IN_cmu-indic_sk.wav',
'tn_ZA_google-nwu_8333.wav',
'en_US_vctk_p260.wav',
'en_US_vctk_p247.wav',
'en_US_vctk_p329.wav',
'en_US_cmu_arctic_fem.wav',
'en_US_cmu_arctic_rms.wav',
'en_US_vctk_p308.wav',
'jv_ID_google-gmu_08736.wav',
'en_US_vctk_p245.wav',
'fr_FR_m-ailabs_nadine_eckert_boulet.wav',
'jv_ID_google-gmu_03314.wav',
'en_US_vctk_p239.wav',
'jv_ID_google-gmu_05540.wav',
'it_IT_mls_7440.wav',
'en_US_vctk_p310.wav',
'en_US_vctk_p237.wav',
'en_US_hifi-tts_92.wav',
'en_US_cmu_arctic_aew.wav',
'ne_NP_ne-google_2099.wav',
'en_US_vctk_p226.wav',
'af_ZA_google-nwu_1919.wav',
'jv_ID_google-gmu_03727.wav',
'en_US_vctk_p317.wav',
'tn_ZA_google-nwu_0378.wav',
'nl_pmk.wav',
'en_US_vctk_p286.wav',
'tn_ZA_google-nwu_3342.wav',
# 'en_US_vctk_p343.wav',
'de_DE_m-ailabs_ramona_deininger.wav',
'jv_ID_google-gmu_03424.wav',
'en_US_vctk_p341.wav',
'jv_ID_google-gmu_03187.wav',
'ne_NP_ne-google_3960.wav',
'jv_ID_google-gmu_06080.wav',
'ne_NP_ne-google_3997.wav',
# 'en_US_vctk_p267.wav',
'en_US_vctk_p240.wav',
'ne_NP_ne-google_5687.wav',
'ne_NP_ne-google_9407.wav',
'jv_ID_google-gmu_05667.wav',
'jv_ID_google-gmu_01519.wav',
'ne_NP_ne-google_7957.wav',
'it_IT_mls_4705.wav',
'ne_NP_ne-google_6329.wav',
'it_IT_mls_1725.wav',
'tn_ZA_google-nwu_8914.wav',
'en_US_ljspeech.wav',
'tn_ZA_google-nwu_4850.wav',
'en_US_vctk_p238.wav',
'en_US_vctk_p302.wav',
'jv_ID_google-gmu_08178.wav',
'en_US_vctk_p313.wav',
'af_ZA_google-nwu_2418.wav',
'bn_multi_00737.wav',
'en_US_vctk_p275.wav', # y
'af_ZA_google-nwu_0184.wav',
'jv_ID_google-gmu_07638.wav',
'ne_NP_ne-google_6587.wav',
'ne_NP_ne-google_0258.wav',
'en_US_vctk_p232.wav',
'en_US_vctk_p336.wav',
'jv_ID_google-gmu_09039.wav',
'en_US_vctk_p312.wav',
'af_ZA_google-nwu_8148.wav',
'en_US_vctk_p326.wav',
'en_US_vctk_p264.wav',
'en_US_vctk_p295.wav',
# 'en_US_vctk_p298.wav',
'es_ES_m-ailabs_victor_villarraza.wav',
'pl_PL_m-ailabs_nina_brown.wav',
'tn_ZA_google-nwu_9365.wav',
'en_US_vctk_p294.wav',
'jv_ID_google-gmu_00658.wav',
'jv_ID_google-gmu_08305.wav',
'en_US_vctk_p330.wav',
'gu_IN_cmu-indic_cmu_indic_guj_dp.wav',
'jv_ID_google-gmu_05219.wav',
'en_US_vctk_p284.wav',
'de_DE_m-ailabs_eva_k.wav',
# 'bn_multi_00779.wav',
'en_UK_apope.wav',
'en_US_vctk_p345.wav',
'it_IT_mls_6744.wav',
'en_US_vctk_p347.wav',
'en_US_m-ailabs_mary_ann.wav',
'en_US_m-ailabs_elliot_miller.wav',
'en_US_vctk_p279.wav',
'ru_RU_multi_nikolaev.wav',
'bn_multi_4811.wav',
'tn_ZA_google-nwu_7693.wav',
'bn_multi_01701.wav',
'en_US_vctk_p262.wav',
# 'en_US_vctk_p266.wav',
'en_US_vctk_p243.wav',
'en_US_vctk_p297.wav',
'en_US_vctk_p278.wav',
'jv_ID_google-gmu_02059.wav',
'en_US_vctk_p231.wav',
'te_IN_cmu-indic_kpn.wav',
'en_US_vctk_p250.wav',
'it_IT_mls_4974.wav',
'en_US_cmu_arctic_awbrms.wav',
# 'en_US_vctk_p263.wav',
'nl_femal.wav',
'tn_ZA_google-nwu_6116.wav',
'jv_ID_google-gmu_06383.wav',
'en_US_vctk_p225.wav',
'en_US_vctk_p228.wav',
'it_IT_mls_277.wav',
'tn_ZA_google-nwu_7866.wav',
'en_US_vctk_p300.wav',
'ne_NP_ne-google_0649.wav',
'es_ES_carlfm.wav',
'jv_ID_google-gmu_06510.wav',
'de_DE_m-ailabs_rebecca_braunert_plunkett.wav',
'en_US_vctk_p340.wav',
'en_US_cmu_arctic_gka.wav',
'ne_NP_ne-google_2027.wav',
'jv_ID_google-gmu_09724.wav',
'en_US_vctk_p361.wav',
'ne_NP_ne-google_6834.wav',
'jv_ID_google-gmu_02326.wav',
'fr_FR_m-ailabs_zeckou.wav',
'tn_ZA_google-nwu_1932.wav',
# 'female-20-happy.wav',
'tn_ZA_google-nwu_1483.wav',
'de_DE_thorsten-emotion_amused.wav',
'ru_RU_multi_minaev.wav',
'sw_lanfrica.wav',
'en_US_vctk_p271.wav',
'tn_ZA_google-nwu_0441.wav',
'it_IT_mls_6001.wav',
'en_US_vctk_p305.wav',
'it_IT_mls_8828.wav',
'jv_ID_google-gmu_08002.wav',
'it_IT_mls_2033.wav',
'tn_ZA_google-nwu_3629.wav',
'it_IT_mls_6348.wav',
'en_US_cmu_arctic_axb.wav',
'it_IT_mls_8181.wav',
'en_US_vctk_p230.wav',
'af_ZA_google-nwu_7214.wav',
'nl_nathalie.wav',
'it_IT_mls_8207.wav',
'ko_KO_kss.wav',
'af_ZA_google-nwu_6590.wav',
'jv_ID_google-gmu_00264.wav',
'tn_ZA_google-nwu_6234.wav',
'jv_ID_google-gmu_05522.wav',
'en_US_cmu_arctic_lnh.wav',
'en_US_vctk_p272.wav',
'en_US_cmu_arctic_slp.wav',
'en_US_vctk_p299.wav',
'en_US_hifi-tts_9017.wav',
'it_IT_mls_4998.wav',
'it_IT_mls_6299.wav',
'en_US_cmu_arctic_rxr.wav',
'female-46-neutral.wav',
'jv_ID_google-gmu_01392.wav',
'tn_ZA_google-nwu_8512.wav',
'en_US_vctk_p244.wav',
# 'bn_multi_3108.wav',
# 'it_IT_mls_7405.wav',
# 'bn_multi_3713.wav',
# 'yo_openbible.wav',
# 'jv_ID_google-gmu_01932.wav',
'en_US_vctk_p270.wav',
'tn_ZA_google-nwu_6459.wav',
'bn_multi_4046.wav',
'en_US_vctk_p288.wav',
'en_US_vctk_p251.wav',
'es_ES_m-ailabs_tux.wav',
'tn_ZA_google-nwu_6206.wav',
'bn_multi_9169.wav',
# 'en_US_vctk_p293.wav',
# 'en_US_vctk_p255.wav',
'af_ZA_google-nwu_8963.wav',
# 'en_US_vctk_p265.wav',
'gu_IN_cmu-indic_cmu_indic_guj_ad.wav',
'jv_ID_google-gmu_07335.wav',
'en_US_vctk_p323.wav',
'en_US_vctk_p281.wav',
'en_US_cmu_arctic_bdl.wav',
'en_US_m-ailabs_judy_bieber.wav',
'it_IT_mls_10446.wav',
'en_US_vctk_p261.wav',
'en_US_vctk_p292.wav',
'te_IN_cmu-indic_ss.wav',
'en_US_vctk_p311.wav',
'it_IT_mls_12428.wav',
'en_US_cmu_arctic_aup.wav',
'jv_ID_google-gmu_04679.wav',
'it_IT_mls_4971.wav',
'en_US_cmu_arctic_ljm.wav',
'fa_haaniye.wav',
'en_US_vctk_p339.wav',
'tn_ZA_google-nwu_7896.wav',
'en_US_vctk_p253.wav',
'it_IT_mls_5421.wav',
# 'ne_NP_ne-google_0546.wav',
'vi_VN_vais1000.wav',
'en_US_vctk_p229.wav',
'en_US_vctk_p254.wav',
'en_US_vctk_p258.wav',
'it_IT_mls_7936.wav',
'en_US_vctk_p301.wav',
'tn_ZA_google-nwu_0045.wav',
'it_IT_mls_659.wav',
'tn_ZA_google-nwu_7674.wav',
'it_IT_mls_12804.wav',
'el_GR_rapunzelina.wav',
'en_US_hifi-tts_6097.wav',
'en_US_vctk_p257.wav',
'jv_ID_google-gmu_07875.wav',
'it_IT_mls_1157.wav',
'it_IT_mls_643.wav',
'en_US_vctk_p304.wav',
'ru_RU_multi_hajdurova.wav',
'it_IT_mls_8461.wav',
'bn_multi_3958.wav',
'it_IT_mls_1989.wav',
'en_US_vctk_p249.wav',
# 'bn_multi_0834.wav',
'en_US_vctk_p307.wav',
'es_ES_m-ailabs_karen_savage.wav',
'fr_FR_m-ailabs_bernard.wav',
'en_US_vctk_p252.wav',
'en_US_cmu_arctic_jmk.wav',
'en_US_vctk_p333.wav',
'tn_ZA_google-nwu_4506.wav',
'ne_NP_ne-google_0283.wav',
'de_DE_m-ailabs_karlsson.wav',
'en_US_cmu_arctic_awb.wav',
'en_US_vctk_p246.wav',
'en_US_cmu_arctic_clb.wav',
'en_US_vctk_p364.wav',
'nl_flemishguy.wav',
'en_US_vctk_p276.wav', # y
# 'en_US_vctk_p274.wav',
'fr_FR_m-ailabs_gilles_g_le_blanc.wav',
'it_IT_mls_7444.wav',
'style_o22050.wav',
'en_US_vctk_s5.wav',
'en_US_vctk_p268.wav',
'it_IT_mls_6807.wav',
'it_IT_mls_2019.wav',
'male-60-angry.wav',
'af_ZA_google-nwu_8924.wav',
'en_US_vctk_p374.wav',
'en_US_vctk_p363.wav',
'it_IT_mls_644.wav',
'ne_NP_ne-google_3614.wav',
'en_US_vctk_p241.wav',
'ne_NP_ne-google_3154.wav',
'en_US_vctk_p234.wav',
'it_IT_mls_8384.wav',
'fr_FR_m-ailabs_ezwa.wav',
'it_IT_mls_5010.wav',
'en_US_vctk_p351.wav',
'en_US_cmu_arctic_eey.wav',
'jv_ID_google-gmu_04285.wav',
'jv_ID_google-gmu_06941.wav',
'hu_HU_diana-majlinger.wav',
'tn_ZA_google-nwu_2839.wav',
'bn_multi_03042.wav',
'tn_ZA_google-nwu_5628.wav',
'it_IT_mls_4649.wav',
'af_ZA_google-nwu_7130.wav',
'en_US_cmu_arctic_slt.wav',
'jv_ID_google-gmu_04175.wav',
'gu_IN_cmu-indic_cmu_indic_guj_kt.wav',
'jv_ID_google-gmu_00027.wav',
'jv_ID_google-gmu_02884.wav',
'en_US_vctk_p360.wav',
'en_US_vctk_p334.wav',
'male-27-sad.wav',
'tn_ZA_google-nwu_1498.wav',
'fi_FI_harri-tapani-ylilammi.wav',
'bn_multi_rm.wav',
'ne_NP_ne-google_2139.wav',
'pl_PL_m-ailabs_piotr_nater.wav',
'fr_FR_siwis.wav',
'nl_bart-de-leeuw.wav',
'jv_ID_google-gmu_04715.wav',
'en_US_vctk_p283.wav',
'en_US_vctk_p314.wav',
'en_US_vctk_p335.wav',
'jv_ID_google-gmu_07765.wav',
'en_US_vctk_p273.wav'
]
VOICES = [t[:-4] for t in VOICES] # crop .wav for visuals in gr.DropDown
_tts = StyleTTS2().to('cpu')
with gr.Blocks(theme='huggingface') as demo:
with gr.Tab(label="TTS"):
with gr.Row():
text_input = gr.Textbox(
label="Type text for TTS:",
placeholder="Type Text for TTS",
lines=4,
value="Farover the misty mountains cold too dungeons deep and caverns old.",
)
choice_dropdown = gr.Dropdown(
choices=language_names + VOICES,
label="Select Voice or Language",
value=VOICES[0]
)
soundscape_input = gr.Textbox(
lines=1,
value="frogs",
label="AudioGen Txt"
)
kv_input = gr.Number(
label="kv Period",
value=24,
)
generate_button = gr.Button("Generate Audio", variant="primary")
output_audio = gr.Audio(label="TTS Output")
generate_button.click(
fn=audionar_tts,
inputs=[text_input, choice_dropdown, soundscape_input, kv_input],
outputs=[output_audio]
)
with gr.Tab(label="API"):
with gr.Row():
with gr.Column():
gr.Markdown("Only the first two seconds of the audio will be processed.")
demo.launch(debug=True) |