Spaces:
Running
Running
del Expressio
Browse files- app.py +79 -988
- textual.py +536 -0
app.py
CHANGED
@@ -1,25 +1,16 @@
|
|
1 |
# -*- coding: utf-8 -*-
|
2 |
import typing
|
3 |
-
import types # fusion of forward() of Wav2Vec2
|
4 |
import gradio as gr
|
5 |
-
import matplotlib.pyplot as plt
|
6 |
import numpy as np
|
7 |
import os
|
8 |
import torch
|
9 |
import torch.nn as nn
|
10 |
-
from transformers import Wav2Vec2Processor
|
11 |
-
from transformers.models.wav2vec2.modeling_wav2vec2 import Wav2Vec2Model
|
12 |
-
from transformers.models.wav2vec2.modeling_wav2vec2 import Wav2Vec2PreTrainedModel
|
13 |
import audiofile
|
14 |
from tts import StyleTTS2
|
|
|
15 |
import audresample
|
16 |
-
import json
|
17 |
-
import re
|
18 |
-
import unicodedata
|
19 |
import textwrap
|
20 |
import nltk
|
21 |
-
from num2words import num2words
|
22 |
-
from num2word_greek.numbers2words import convert_numbers
|
23 |
from audionar import VitsModel, VitsTokenizer
|
24 |
from audiocraft import AudioGen
|
25 |
|
@@ -31,411 +22,9 @@ nltk.download('punkt', download_dir='./')
|
|
31 |
nltk.download('punkt_tab', download_dir='./')
|
32 |
nltk.data.path.append('.')
|
33 |
|
34 |
-
device = 'cpu'
|
35 |
|
36 |
|
37 |
-
def fix_vocals(text, lang='ron'):
|
38 |
|
39 |
-
# Longer phrases should come before shorter ones to prevent partial matches.
|
40 |
-
|
41 |
-
ron_replacements = {
|
42 |
-
'ţ': 'ț',
|
43 |
-
'ț': 'ts',
|
44 |
-
'î': 'u',
|
45 |
-
'â': 'a',
|
46 |
-
'ş': 's',
|
47 |
-
'w': 'oui',
|
48 |
-
'k': 'c',
|
49 |
-
'l': 'll',
|
50 |
-
# Math symbols
|
51 |
-
'sqrt': ' rădăcina pătrată din ',
|
52 |
-
'^': ' la puterea ',
|
53 |
-
'+': ' plus ',
|
54 |
-
' - ': ' minus ', # only replace if standalone so to not say minus if is a-b-c
|
55 |
-
'*': ' ori ', # times
|
56 |
-
'/': ' împărțit la ', # divided by
|
57 |
-
'=': ' egal cu ', # equals
|
58 |
-
'pi': ' pi ',
|
59 |
-
'<': ' mai mic decât ',
|
60 |
-
'>': ' mai mare decât',
|
61 |
-
'%': ' la sută ', # percent (from previous)
|
62 |
-
'(': ' paranteză deschisă ',
|
63 |
-
')': ' paranteză închisă ',
|
64 |
-
'[': ' paranteză pătrată deschisă ',
|
65 |
-
']': ' paranteză pătrată închisă ',
|
66 |
-
'{': ' acoladă deschisă ',
|
67 |
-
'}': ' acoladă închisă ',
|
68 |
-
'≠': ' nu este egal cu ',
|
69 |
-
'≤': ' mai mic sau egal cu ',
|
70 |
-
'≥': ' mai mare sau egal cu ',
|
71 |
-
'≈': ' aproximativ ',
|
72 |
-
'∞': ' infinit ',
|
73 |
-
'€': ' euro ',
|
74 |
-
'$': ' dolar ',
|
75 |
-
'£': ' liră ',
|
76 |
-
'&': ' și ', # and
|
77 |
-
'@': ' la ', # at
|
78 |
-
'#': ' diez ', # hash
|
79 |
-
'∑': ' sumă ',
|
80 |
-
'∫': ' integrală ',
|
81 |
-
'√': ' rădăcina pătrată a ', # more generic square root
|
82 |
-
}
|
83 |
-
|
84 |
-
eng_replacements = {
|
85 |
-
'wik': 'weaky',
|
86 |
-
'sh': 'ss',
|
87 |
-
'ch': 'ttss',
|
88 |
-
'oo': 'oeo',
|
89 |
-
# Math symbols for English
|
90 |
-
'sqrt': ' square root of ',
|
91 |
-
'^': ' to the power of ',
|
92 |
-
'+': ' plus ',
|
93 |
-
' - ': ' minus ',
|
94 |
-
'*': ' times ',
|
95 |
-
' / ': ' divided by ',
|
96 |
-
'=': ' equals ',
|
97 |
-
'pi': ' pi ',
|
98 |
-
'<': ' less than ',
|
99 |
-
'>': ' greater than ',
|
100 |
-
# Additional common math symbols from previous list
|
101 |
-
'%': ' percent ',
|
102 |
-
'(': ' open parenthesis ',
|
103 |
-
')': ' close parenthesis ',
|
104 |
-
'[': ' open bracket ',
|
105 |
-
']': ' close bracket ',
|
106 |
-
'{': ' open curly brace ',
|
107 |
-
'}': ' close curly brace ',
|
108 |
-
'∑': ' sum ',
|
109 |
-
'∫': ' integral ',
|
110 |
-
'√': ' square root of ',
|
111 |
-
'≠': ' not equals ',
|
112 |
-
'≤': ' less than or equals ',
|
113 |
-
'≥': ' greater than or equals ',
|
114 |
-
'≈': ' approximately ',
|
115 |
-
'∞': ' infinity ',
|
116 |
-
'€': ' euro ',
|
117 |
-
'$': ' dollar ',
|
118 |
-
'£': ' pound ',
|
119 |
-
'&': ' and ',
|
120 |
-
'@': ' at ',
|
121 |
-
'#': ' hash ',
|
122 |
-
}
|
123 |
-
|
124 |
-
serbian_replacements = {
|
125 |
-
'rn': 'rrn',
|
126 |
-
'ć': 'č',
|
127 |
-
'c': 'č',
|
128 |
-
'đ': 'd',
|
129 |
-
'j': 'i',
|
130 |
-
'l': 'lll',
|
131 |
-
'w': 'v',
|
132 |
-
# https://huggingface.co/facebook/mms-tts-rmc-script_latin
|
133 |
-
'sqrt': 'kvadratni koren iz',
|
134 |
-
'^': ' na stepen ',
|
135 |
-
'+': ' plus ',
|
136 |
-
' - ': ' minus ',
|
137 |
-
'*': ' puta ',
|
138 |
-
' / ': ' podeljeno sa ',
|
139 |
-
'=': ' jednako ',
|
140 |
-
'pi': ' pi ',
|
141 |
-
'<': ' manje od ',
|
142 |
-
'>': ' veće od ',
|
143 |
-
'%': ' procenat ',
|
144 |
-
'(': ' otvorena zagrada ',
|
145 |
-
')': ' zatvorena zagrada ',
|
146 |
-
'[': ' otvorena uglasta zagrada ',
|
147 |
-
']': ' zatvorena uglasta zagrada ',
|
148 |
-
'{': ' otvorena vitičasta zagrada ',
|
149 |
-
'}': ' zatvorena vitičasta zagrada ',
|
150 |
-
'∑': ' suma ',
|
151 |
-
'∫': ' integral ',
|
152 |
-
'√': ' kvadratni koren ',
|
153 |
-
'≠': ' nije jednako ',
|
154 |
-
'≤': ' manje ili jednako od ',
|
155 |
-
'≥': ' veće ili jednako od ',
|
156 |
-
'≈': ' približno ',
|
157 |
-
'∞': ' beskonačnost ',
|
158 |
-
'€': ' evro ',
|
159 |
-
'$': ' dolar ',
|
160 |
-
'£': ' funta ',
|
161 |
-
'&': ' i ',
|
162 |
-
'@': ' et ',
|
163 |
-
'#': ' taraba ',
|
164 |
-
# Others
|
165 |
-
# 'rn': 'rrn',
|
166 |
-
# 'ć': 'č',
|
167 |
-
# 'c': 'č',
|
168 |
-
# 'đ': 'd',
|
169 |
-
# 'l': 'le',
|
170 |
-
# 'ij': 'i',
|
171 |
-
# 'ji': 'i',
|
172 |
-
# 'j': 'i',
|
173 |
-
# 'služ': 'sloooozz', # 'službeno'
|
174 |
-
# 'suver': 'siuveeerra', # 'suverena'
|
175 |
-
# 'država': 'dirrezav', # 'država'
|
176 |
-
# 'iči': 'ici', # 'Graniči'
|
177 |
-
# 's ': 'se', # a s with space
|
178 |
-
# 'q': 'ku',
|
179 |
-
# 'w': 'aou',
|
180 |
-
# 'z': 's',
|
181 |
-
# "š": "s",
|
182 |
-
# 'th': 'ta',
|
183 |
-
# 'v': 'vv',
|
184 |
-
# "ć": "č",
|
185 |
-
# "đ": "ď",
|
186 |
-
# "lj": "ľ",
|
187 |
-
# "nj": "ň",
|
188 |
-
# "ž": "z",
|
189 |
-
# "c": "č"
|
190 |
-
}
|
191 |
-
|
192 |
-
deu_replacements = {
|
193 |
-
'sch': 'sh',
|
194 |
-
'ch': 'kh',
|
195 |
-
'ie': 'ee',
|
196 |
-
'ei': 'ai',
|
197 |
-
'ä': 'ae',
|
198 |
-
'ö': 'oe',
|
199 |
-
'ü': 'ue',
|
200 |
-
'ß': 'ss',
|
201 |
-
# Math symbols for German
|
202 |
-
'sqrt': ' Quadratwurzel aus ',
|
203 |
-
'^': ' hoch ',
|
204 |
-
'+': ' plus ',
|
205 |
-
' - ': ' minus ',
|
206 |
-
'*': ' mal ',
|
207 |
-
' / ': ' geteilt durch ',
|
208 |
-
'=': ' gleich ',
|
209 |
-
'pi': ' pi ',
|
210 |
-
'<': ' kleiner als ',
|
211 |
-
'>': ' größer als',
|
212 |
-
# Additional common math symbols from previous list
|
213 |
-
'%': ' prozent ',
|
214 |
-
'(': ' Klammer auf ',
|
215 |
-
')': ' Klammer zu ',
|
216 |
-
'[': ' eckige Klammer auf ',
|
217 |
-
']': ' eckige Klammer zu ',
|
218 |
-
'{': ' geschweifte Klammer auf ',
|
219 |
-
'}': ' geschweifte Klammer zu ',
|
220 |
-
'∑': ' Summe ',
|
221 |
-
'∫': ' Integral ',
|
222 |
-
'√': ' Quadratwurzel ',
|
223 |
-
'≠': ' ungleich ',
|
224 |
-
'≤': ' kleiner oder gleich ',
|
225 |
-
'≥': ' größer oder gleich ',
|
226 |
-
'≈': ' ungefähr ',
|
227 |
-
'∞': ' unendlich ',
|
228 |
-
'€': ' euro ',
|
229 |
-
'$': ' dollar ',
|
230 |
-
'£': ' pfund ',
|
231 |
-
'&': ' und ',
|
232 |
-
'@': ' at ', # 'Klammeraffe' is also common but 'at' is simpler
|
233 |
-
'#': ' raute ',
|
234 |
-
}
|
235 |
-
|
236 |
-
fra_replacements = {
|
237 |
-
# French specific phonetic replacements (add as needed)
|
238 |
-
# e.g., 'ç': 's', 'é': 'e', etc.
|
239 |
-
'w': 'v',
|
240 |
-
# Math symbols for French
|
241 |
-
'sqrt': ' racine carrée de ',
|
242 |
-
'^': ' à la puissance ',
|
243 |
-
'+': ' plus ',
|
244 |
-
' - ': ' moins ', # tiré ;
|
245 |
-
'*': ' fois ',
|
246 |
-
' / ': ' divisé par ',
|
247 |
-
'=': ' égale ',
|
248 |
-
'pi': ' pi ',
|
249 |
-
'<': ' inférieur à ',
|
250 |
-
'>': ' supérieur à ',
|
251 |
-
# Add more common math symbols as needed for French
|
252 |
-
'%': ' pour cent ',
|
253 |
-
'(': ' parenthèse ouverte ',
|
254 |
-
')': ' parenthèse fermée ',
|
255 |
-
'[': ' crochet ouvert ',
|
256 |
-
']': ' crochet fermé ',
|
257 |
-
'{': ' accolade ouverte ',
|
258 |
-
'}': ' accolade fermée ',
|
259 |
-
'∑': ' somme ',
|
260 |
-
'∫': ' intégrale ',
|
261 |
-
'√': ' racine carrée ',
|
262 |
-
'≠': ' n\'égale pas ',
|
263 |
-
'≤': ' inférieur ou égal à ',
|
264 |
-
'≥': ' supérieur ou égal à ',
|
265 |
-
'≈': ' approximativement ',
|
266 |
-
'∞': ' infini ',
|
267 |
-
'€': ' euro ',
|
268 |
-
'$': ' dollar ',
|
269 |
-
'£': ' livre ',
|
270 |
-
'&': ' et ',
|
271 |
-
'@': ' arobase ',
|
272 |
-
'#': ' dièse ',
|
273 |
-
}
|
274 |
-
|
275 |
-
hun_replacements = {
|
276 |
-
# Hungarian specific phonetic replacements (add as needed)
|
277 |
-
# e.g., 'á': 'a', 'é': 'e', etc.
|
278 |
-
'ch': 'ts',
|
279 |
-
'cs': 'tz',
|
280 |
-
'g': 'gk',
|
281 |
-
'w': 'v',
|
282 |
-
'z': 'zz',
|
283 |
-
# Math symbols for Hungarian
|
284 |
-
'sqrt': ' négyzetgyök ',
|
285 |
-
'^': ' hatvány ',
|
286 |
-
'+': ' plusz ',
|
287 |
-
' - ': ' mínusz ',
|
288 |
-
'*': ' szorozva ',
|
289 |
-
' / ': ' osztva ',
|
290 |
-
'=': ' egyenlő ',
|
291 |
-
'pi': ' pi ',
|
292 |
-
'<': ' kisebb mint ',
|
293 |
-
'>': ' nagyobb mint ',
|
294 |
-
# Add more common math symbols as needed for Hungarian
|
295 |
-
'%': ' százalék ',
|
296 |
-
'(': ' nyitó zárójel ',
|
297 |
-
')': ' záró zárójel ',
|
298 |
-
'[': ' nyitó szögletes zárójel ',
|
299 |
-
']': ' záró szögletes zárójel ',
|
300 |
-
'{': ' nyitó kapcsos zárójel ',
|
301 |
-
'}': ' záró kapcsos zárójel ',
|
302 |
-
'∑': ' szumma ',
|
303 |
-
'∫': ' integrál ',
|
304 |
-
'√': ' négyzetgyök ',
|
305 |
-
'≠': ' nem egyenlő ',
|
306 |
-
'≤': ' kisebb vagy egyenlő ',
|
307 |
-
'≥': ' nagyobb vagy egyenlő ',
|
308 |
-
'≈': ' körülbelül ',
|
309 |
-
'∞': ' végtelen ',
|
310 |
-
'€': ' euró ',
|
311 |
-
'$': ' dollár ',
|
312 |
-
'£': ' font ',
|
313 |
-
'&': ' és ',
|
314 |
-
'@': ' kukac ',
|
315 |
-
'#': ' kettőskereszt ',
|
316 |
-
}
|
317 |
-
|
318 |
-
grc_replacements = {
|
319 |
-
# Ancient Greek specific phonetic replacements (add as needed)
|
320 |
-
# These are more about transliterating Greek letters if they are in the input text.
|
321 |
-
# Math symbols for Ancient Greek (literal translations)
|
322 |
-
'sqrt': ' τετραγωνικὴ ῥίζα ',
|
323 |
-
'^': ' εἰς τὴν δύναμιν ',
|
324 |
-
'+': ' σὺν ',
|
325 |
-
' - ': ' χωρὶς ',
|
326 |
-
'*': ' πολλάκις ',
|
327 |
-
' / ': ' διαιρέω ',
|
328 |
-
'=': ' ἴσον ',
|
329 |
-
'pi': ' πῖ ',
|
330 |
-
'<': ' ἔλαττον ',
|
331 |
-
'>': ' μεῖζον ',
|
332 |
-
# Add more common math symbols as needed for Ancient Greek
|
333 |
-
'%': ' τοῖς ���κατόν ', # tois hekaton - 'of the hundred'
|
334 |
-
'(': ' ἀνοικτὴ παρένθεσις ',
|
335 |
-
')': ' κλειστὴ παρένθεσις ',
|
336 |
-
'[': ' ἀνοικτὴ ἀγκύλη ',
|
337 |
-
']': ' κλειστὴ ἀγκύλη ',
|
338 |
-
'{': ' ἀνοικτὴ σγουρὴ ἀγκύλη ',
|
339 |
-
'}': ' κλειστὴ σγουρὴ ἀγκύλη ',
|
340 |
-
'∑': ' ἄθροισμα ',
|
341 |
-
'∫': ' ὁλοκλήρωμα ',
|
342 |
-
'√': ' τετραγωνικὴ ῥίζα ',
|
343 |
-
'≠': ' οὐκ ἴσον ',
|
344 |
-
'≤': ' ἔλαττον ἢ ἴσον ',
|
345 |
-
'≥': ' μεῖζον ἢ ἴσον ',
|
346 |
-
'≈': ' περίπου ',
|
347 |
-
'∞': ' ἄπειρον ',
|
348 |
-
'€': ' εὐρώ ',
|
349 |
-
'$': ' δολάριον ',
|
350 |
-
'£': ' λίρα ',
|
351 |
-
'&': ' καὶ ',
|
352 |
-
'@': ' ἀτ ', # at
|
353 |
-
'#': ' δίεση ', # hash
|
354 |
-
}
|
355 |
-
|
356 |
-
|
357 |
-
# Select the appropriate replacement dictionary based on the language
|
358 |
-
replacements_map = {
|
359 |
-
'grc': grc_replacements,
|
360 |
-
'ron': ron_replacements,
|
361 |
-
'eng': eng_replacements,
|
362 |
-
'deu': deu_replacements,
|
363 |
-
'fra': fra_replacements,
|
364 |
-
'hun': hun_replacements,
|
365 |
-
'rmc-script_latin': serbian_replacements,
|
366 |
-
}
|
367 |
-
|
368 |
-
current_replacements = replacements_map.get(lang)
|
369 |
-
if current_replacements:
|
370 |
-
# Sort replacements by length of the key in descending order.
|
371 |
-
# This is crucial for correctly replacing multi-character strings (like 'sqrt', 'sch')
|
372 |
-
# before their shorter substrings ('s', 'ch', 'q', 'r', 't').
|
373 |
-
sorted_replacements = sorted(current_replacements.items(), key=lambda item: len(item[0]), reverse=True)
|
374 |
-
for old, new in sorted_replacements:
|
375 |
-
text = text.replace(old, new)
|
376 |
-
return text
|
377 |
-
else:
|
378 |
-
# If the language is not supported, return the original text
|
379 |
-
print(f"Warning: Language '{lang}' not supported for text replacement. Returning original text.")
|
380 |
-
return text
|
381 |
-
|
382 |
-
|
383 |
-
def _num2words(text='01234', lang=None):
|
384 |
-
if lang == 'grc':
|
385 |
-
return convert_numbers(text)
|
386 |
-
return num2words(text, lang=lang) # HAS TO BE kwarg lang=lang
|
387 |
-
|
388 |
-
|
389 |
-
def transliterate_number(number_string,
|
390 |
-
lang=None):
|
391 |
-
if lang == 'rmc-script_latin':
|
392 |
-
lang = 'sr'
|
393 |
-
exponential_pronoun = ' puta deset na stepen od '
|
394 |
-
comma = ' tačka '
|
395 |
-
elif lang == 'ron':
|
396 |
-
lang = 'ro'
|
397 |
-
exponential_pronoun = ' tízszer a erejéig '
|
398 |
-
comma = ' virgulă '
|
399 |
-
elif lang == 'hun':
|
400 |
-
lang = 'hu'
|
401 |
-
exponential_pronoun = ' tízszer a erejéig '
|
402 |
-
comma = ' virgula '
|
403 |
-
elif lang == 'deu':
|
404 |
-
exponential_pronoun = ' mal zehn hoch '
|
405 |
-
comma = ' komma '
|
406 |
-
elif lang == 'fra':
|
407 |
-
lang = 'fr'
|
408 |
-
exponential_pronoun = ' puissance '
|
409 |
-
comma = 'virgule'
|
410 |
-
elif lang == 'grc':
|
411 |
-
exponential_pronoun = ' εις την δυναμην του '
|
412 |
-
comma = 'κομμα'
|
413 |
-
else:
|
414 |
-
lang = lang[:2]
|
415 |
-
exponential_pronoun = ' times ten to the power of '
|
416 |
-
comma = ' point '
|
417 |
-
|
418 |
-
def replace_number(match):
|
419 |
-
prefix = match.group(1) or ""
|
420 |
-
number_part = match.group(2)
|
421 |
-
suffix = match.group(5) or ""
|
422 |
-
|
423 |
-
try:
|
424 |
-
if 'e' in number_part.lower():
|
425 |
-
base, exponent = number_part.lower().split('e')
|
426 |
-
words = _num2words(base, lang=lang) + exponential_pronoun + _num2words(exponent, lang=lang)
|
427 |
-
elif '.' in number_part:
|
428 |
-
integer_part, decimal_part = number_part.split('.')
|
429 |
-
words = _num2words(integer_part, lang=lang) + comma + " ".join(
|
430 |
-
[_num2words(digit, lang=lang) for digit in decimal_part])
|
431 |
-
else:
|
432 |
-
words = _num2words(number_part, lang=lang)
|
433 |
-
return prefix + words + suffix
|
434 |
-
except ValueError:
|
435 |
-
return match.group(0) # Return original if conversion fails
|
436 |
-
|
437 |
-
pattern = r'([^\d]*)(\d+(\.\d+)?([Ee][+-]?\d+)?)([^\d]*)'
|
438 |
-
return re.sub(pattern, replace_number, number_string)
|
439 |
|
440 |
|
441 |
language_names = ['Ancient greek',
|
@@ -448,7 +37,7 @@ language_names = ['Ancient greek',
|
|
448 |
|
449 |
|
450 |
def audionar_tts(text=None,
|
451 |
-
lang='
|
452 |
soundscape='',
|
453 |
cache_lim=24):
|
454 |
|
@@ -464,404 +53,115 @@ def audionar_tts(text=None,
|
|
464 |
'romanian': 'ron',
|
465 |
'serbian (approx.)': 'rmc-script_latin',
|
466 |
}
|
467 |
-
|
468 |
-
if text and text.strip():
|
469 |
-
|
470 |
-
if lang not in language_names:
|
471 |
-
|
472 |
-
speech_audio = _styletts2(text=text, # Eng.
|
473 |
-
ref_s='wav/' + lang + '.wav')
|
474 |
-
|
475 |
-
else: # VITS
|
476 |
-
|
477 |
-
lang_code = lang_map.get(lang.lower(), lang.lower().split()[0].strip())
|
478 |
-
|
479 |
-
global cached_lang_code, cached_net_g, cached_tokenizer
|
480 |
-
|
481 |
-
if 'cached_lang_code' not in globals() or cached_lang_code != lang_code:
|
482 |
-
cached_lang_code = lang_code
|
483 |
-
cached_net_g = VitsModel.from_pretrained(f'facebook/mms-tts-{lang_code}').eval()
|
484 |
-
cached_tokenizer = VitsTokenizer.from_pretrained(f'facebook/mms-tts-{lang_code}')
|
485 |
|
486 |
-
net_g = cached_net_g
|
487 |
-
tokenizer = cached_tokenizer
|
488 |
-
text = only_greek_or_only_latin(text, lang=lang_code)
|
489 |
-
text = transliterate_number(text, lang=lang_code)
|
490 |
-
text = fix_vocals(text, lang=lang_code)
|
491 |
|
|
|
492 |
|
493 |
-
sentences = textwrap.wrap(text, width=439)
|
494 |
|
495 |
-
|
496 |
-
|
497 |
-
inputs = cached_tokenizer(sentence, return_tensors="pt")
|
498 |
-
with torch.no_grad():
|
499 |
-
audio_part = cached_net_g(
|
500 |
-
input_ids=inputs.input_ids.to(device),
|
501 |
-
attention_mask=inputs.attention_mask.to(device),
|
502 |
-
lang_code=lang_code,
|
503 |
-
)[0, :]
|
504 |
-
total_audio_parts.append(audio_part)
|
505 |
|
506 |
-
speech_audio = torch.cat(total_audio_parts).cpu().numpy()
|
507 |
|
508 |
-
|
509 |
-
if soundscape and soundscape.strip():
|
510 |
|
|
|
511 |
|
512 |
-
|
513 |
-
target_duration = max(speech_duration_secs + 0.74, 2.0)
|
514 |
-
|
515 |
-
|
516 |
-
background_audio = audiogen.generate(
|
517 |
-
soundscape,
|
518 |
-
duration=target_duration,
|
519 |
-
cache_lim=max(4, int(cache_lim)) # at least allow 10 A/R stEps
|
520 |
-
).numpy()
|
521 |
-
|
522 |
-
if speech_audio is not None:
|
523 |
-
|
524 |
-
len_speech = len(speech_audio)
|
525 |
-
len_background = len(background_audio)
|
526 |
-
|
527 |
-
if len_background > len_speech:
|
528 |
-
padding = np.zeros(len_background - len_speech,
|
529 |
-
dtype=np.float32)
|
530 |
-
speech_audio = np.concatenate([speech_audio, padding])
|
531 |
-
elif len_speech > len_background:
|
532 |
-
padding = np.zeros(len_speech - len_background,
|
533 |
-
dtype=np.float32)
|
534 |
-
background_audio = np.concatenate([background_audio, padding])
|
535 |
-
|
536 |
-
|
537 |
-
speech_audio_stereo = speech_audio[None, :]
|
538 |
-
background_audio_stereo = background_audio[None, :]
|
539 |
-
|
540 |
|
541 |
-
|
542 |
-
|
543 |
-
|
544 |
-
|
545 |
-
else:
|
546 |
-
final_audio = background_audio
|
547 |
|
548 |
-
|
549 |
-
|
550 |
-
|
551 |
|
552 |
-
#
|
553 |
-
|
554 |
-
|
555 |
-
|
556 |
-
wavfile = '_vits_.wav'
|
557 |
-
audiofile.write(wavfile, final_audio, 16000)
|
558 |
-
|
559 |
-
return wavfile, wavfile # 2x file for [audio out & state to pass to the Emotion reco tAB]
|
560 |
-
|
561 |
-
|
562 |
-
# -- EXPRESSIO
|
563 |
-
|
564 |
-
|
565 |
-
device = 0 if torch.cuda.is_available() else "cpu"
|
566 |
-
duration = 2 # limit processing of audio
|
567 |
-
age_gender_model_name = "audeering/wav2vec2-large-robust-6-ft-age-gender"
|
568 |
-
expression_model_name = "audeering/wav2vec2-large-robust-12-ft-emotion-msp-dim"
|
569 |
-
|
570 |
-
|
571 |
-
class AgeGenderHead(nn.Module):
|
572 |
-
r"""Age-gender model head."""
|
573 |
-
|
574 |
-
def __init__(self, config, num_labels):
|
575 |
-
|
576 |
-
super().__init__()
|
577 |
-
|
578 |
-
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
579 |
-
self.dropout = nn.Dropout(config.final_dropout)
|
580 |
-
self.out_proj = nn.Linear(config.hidden_size, num_labels)
|
581 |
-
|
582 |
-
def forward(self, features, **kwargs):
|
583 |
-
|
584 |
-
x = features
|
585 |
-
x = self.dropout(x)
|
586 |
-
x = self.dense(x)
|
587 |
-
x = torch.tanh(x)
|
588 |
-
x = self.dropout(x)
|
589 |
-
x = self.out_proj(x)
|
590 |
-
|
591 |
-
return x
|
592 |
-
|
593 |
-
|
594 |
-
class AgeGenderModel(Wav2Vec2PreTrainedModel):
|
595 |
-
r"""Age-gender recognition model."""
|
596 |
-
|
597 |
-
def __init__(self, config):
|
598 |
-
|
599 |
-
super().__init__(config)
|
600 |
-
|
601 |
-
self.config = config
|
602 |
-
self.wav2vec2 = Wav2Vec2Model(config)
|
603 |
-
self.age = AgeGenderHead(config, 1)
|
604 |
-
self.gender = AgeGenderHead(config, 3)
|
605 |
-
self.init_weights()
|
606 |
-
|
607 |
-
def forward(
|
608 |
-
self,
|
609 |
-
frozen_cnn7,
|
610 |
-
):
|
611 |
-
|
612 |
-
hidden_states = self.wav2vec2(frozen_cnn7=frozen_cnn7) # runs only Transformer layers
|
613 |
-
|
614 |
-
hidden_states = torch.mean(hidden_states, dim=1)
|
615 |
-
logits_age = self.age(hidden_states)
|
616 |
-
logits_gender = torch.softmax(self.gender(hidden_states), dim=1)
|
617 |
-
|
618 |
-
return hidden_states, logits_age, logits_gender
|
619 |
-
|
620 |
-
# AgeGenderModel.forward() is switched to accept computed frozen CNN7 features from ExpressioNmodel
|
621 |
-
|
622 |
-
def _forward(
|
623 |
-
self,
|
624 |
-
frozen_cnn7=None, # CNN7 fetures of wav2vec2 calc. from CNN7 feature extractor (once)
|
625 |
-
attention_mask=None):
|
626 |
-
|
627 |
-
|
628 |
-
if attention_mask is not None:
|
629 |
-
# compute reduced attention_mask corresponding to feature vectors
|
630 |
-
attention_mask = self._get_feature_vector_attention_mask(
|
631 |
-
frozen_cnn7.shape[1], attention_mask, add_adapter=False
|
632 |
-
)
|
633 |
-
|
634 |
-
hidden_states, _ = self.wav2vec2.feature_projection(frozen_cnn7)
|
635 |
-
|
636 |
-
hidden_states = self.wav2vec2.encoder(
|
637 |
-
hidden_states,
|
638 |
-
attention_mask=attention_mask,
|
639 |
-
output_attentions=None,
|
640 |
-
output_hidden_states=None,
|
641 |
-
return_dict=None,
|
642 |
-
)[0]
|
643 |
-
|
644 |
-
return hidden_states
|
645 |
-
|
646 |
-
|
647 |
-
def _forward_and_cnn7(
|
648 |
-
self,
|
649 |
-
input_values,
|
650 |
-
attention_mask=None):
|
651 |
-
|
652 |
-
frozen_cnn7 = self.wav2vec2.feature_extractor(input_values)
|
653 |
-
frozen_cnn7 = frozen_cnn7.transpose(1, 2)
|
654 |
-
|
655 |
-
if attention_mask is not None:
|
656 |
-
# compute reduced attention_mask corresponding to feature vectors
|
657 |
-
attention_mask = self.wav2vec2._get_feature_vector_attention_mask(
|
658 |
-
frozen_cnn7.shape[1], attention_mask, add_adapter=False
|
659 |
-
)
|
660 |
-
|
661 |
-
hidden_states, _ = self.wav2vec2.feature_projection(frozen_cnn7) # grad=True non frozen
|
662 |
-
|
663 |
-
hidden_states = self.wav2vec2.encoder(
|
664 |
-
hidden_states,
|
665 |
-
attention_mask=attention_mask,
|
666 |
-
output_attentions=None,
|
667 |
-
output_hidden_states=None,
|
668 |
-
return_dict=None,
|
669 |
-
)[0]
|
670 |
-
|
671 |
-
return hidden_states, frozen_cnn7 #feature_proj is trainable thus we have to access the frozen_cnn7 before projection layer
|
672 |
-
|
673 |
-
|
674 |
-
class ExpressionHead(nn.Module):
|
675 |
-
r"""Expression model head."""
|
676 |
-
|
677 |
-
def __init__(self, config):
|
678 |
-
|
679 |
-
super().__init__()
|
680 |
-
|
681 |
-
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
682 |
-
self.dropout = nn.Dropout(config.final_dropout)
|
683 |
-
self.out_proj = nn.Linear(config.hidden_size, config.num_labels)
|
684 |
-
|
685 |
-
def forward(self, features, **kwargs):
|
686 |
-
|
687 |
-
x = features
|
688 |
-
x = self.dropout(x)
|
689 |
-
x = self.dense(x)
|
690 |
-
x = torch.tanh(x)
|
691 |
-
x = self.dropout(x)
|
692 |
-
x = self.out_proj(x)
|
693 |
-
|
694 |
-
return x
|
695 |
|
|
|
696 |
|
697 |
-
|
698 |
-
|
|
|
|
|
699 |
|
700 |
-
|
|
|
|
|
|
|
|
|
701 |
|
702 |
-
super().__init__(config)
|
703 |
|
704 |
-
|
705 |
-
self.wav2vec2 = Wav2Vec2Model(config)
|
706 |
-
self.classifier = ExpressionHead(config)
|
707 |
-
self.init_weights()
|
708 |
|
709 |
-
|
710 |
-
|
711 |
-
|
712 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
713 |
|
714 |
-
|
715 |
|
716 |
|
717 |
-
|
718 |
|
719 |
-
|
720 |
-
|
721 |
-
|
722 |
|
723 |
-
# Emotion Calc. CNN features
|
724 |
|
725 |
-
|
726 |
-
|
|
|
|
|
|
|
727 |
|
728 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
729 |
|
730 |
-
# batch audio
|
731 |
-
y = expression_processor(x, sampling_rate=sampling_rate)
|
732 |
-
y = y['input_values'][0]
|
733 |
-
y = y.reshape(1, -1)
|
734 |
-
y = torch.from_numpy(y).to(device)
|
735 |
|
736 |
-
|
737 |
-
|
738 |
-
_, logits_expression, frozen_cnn7 = expression_model(y)
|
739 |
|
740 |
-
_, logits_age, logits_gender = age_gender_model(frozen_cnn7=frozen_cnn7)
|
741 |
|
742 |
-
|
743 |
-
|
744 |
-
|
745 |
-
|
746 |
-
expression_file = "expression.png"
|
747 |
-
plt.savefig(expression_file)
|
748 |
-
return (
|
749 |
-
f"{round(100 * logits_age[0, 0].item())} years", # age
|
750 |
-
{
|
751 |
-
"female": logits_gender[0, 0].item(),
|
752 |
-
"male": logits_gender[0, 1].item(),
|
753 |
-
"child": logits_gender[0, 2].item(),
|
754 |
-
},
|
755 |
-
expression_file,
|
756 |
-
)
|
757 |
|
|
|
|
|
|
|
758 |
|
759 |
-
def recognize(input_file):
|
760 |
-
if input_file is None:
|
761 |
-
raise gr.Error(
|
762 |
-
"No audio file submitted! "
|
763 |
-
"Please upload or record an audio file "
|
764 |
-
"before submitting your request."
|
765 |
-
)
|
766 |
-
|
767 |
-
signal, sampling_rate = audiofile.read(input_file, duration=duration)
|
768 |
-
# Resample to sampling rate supported byu the models
|
769 |
-
target_rate = 16000
|
770 |
-
signal = audresample.resample(signal, sampling_rate, target_rate)
|
771 |
-
|
772 |
-
return process_func(signal, target_rate)
|
773 |
-
|
774 |
-
|
775 |
-
def explode(data):
|
776 |
-
"""
|
777 |
-
Expands a 3D array by creating gaps between voxels.
|
778 |
-
This function is used to create the visual separation between the voxels.
|
779 |
-
"""
|
780 |
-
shape_orig = np.array(data.shape)
|
781 |
-
shape_new = shape_orig * 2 - 1
|
782 |
-
retval = np.zeros(shape_new, dtype=data.dtype)
|
783 |
-
retval[::2, ::2, ::2] = data
|
784 |
-
return retval
|
785 |
-
|
786 |
-
|
787 |
-
def explode(data):
|
788 |
-
"""
|
789 |
-
Expands a 3D array by adding new voxels between existing ones.
|
790 |
-
This is used to create the gaps in the 3D plot.
|
791 |
-
"""
|
792 |
-
shape = data.shape
|
793 |
-
new_shape = (2 * shape[0] - 1, 2 * shape[1] - 1, 2 * shape[2] - 1)
|
794 |
-
new_data = np.zeros(new_shape, dtype=data.dtype)
|
795 |
-
new_data[::2, ::2, ::2] = data
|
796 |
-
return new_data
|
797 |
-
|
798 |
-
def plot_expression(arousal, dominance, valence):
|
799 |
-
'''_h = cuda tensor (N_PIX, N_PIX, N_PIX)'''
|
800 |
-
|
801 |
-
N_PIX = 5
|
802 |
-
_h = np.random.rand(N_PIX, N_PIX, N_PIX) * 1e-3
|
803 |
-
adv = np.array([arousal, .994 - dominance, valence]).clip(0, .99)
|
804 |
-
arousal, dominance, valence = (adv * N_PIX).astype(np.int64) # find voxel
|
805 |
-
_h[arousal, dominance, valence] = .22
|
806 |
-
|
807 |
-
filled = np.ones((N_PIX, N_PIX, N_PIX), dtype=bool)
|
808 |
-
|
809 |
-
# upscale the above voxel image, leaving gaps
|
810 |
-
filled_2 = explode(filled)
|
811 |
-
|
812 |
-
# Shrink the gaps
|
813 |
-
x, y, z = np.indices(np.array(filled_2.shape) + 1).astype(float) // 2
|
814 |
-
x[1::2, :, :] += 1
|
815 |
-
y[:, 1::2, :] += 1
|
816 |
-
z[:, :, 1::2] += 1
|
817 |
-
|
818 |
-
fig = plt.figure()
|
819 |
-
ax = fig.add_subplot(projection='3d')
|
820 |
-
|
821 |
-
f_2 = np.ones([2 * N_PIX - 1,
|
822 |
-
2 * N_PIX - 1,
|
823 |
-
2 * N_PIX - 1, 4], dtype=np.float64)
|
824 |
-
f_2[:, :, :, 3] = explode(_h)
|
825 |
-
cm = plt.get_cmap('cool')
|
826 |
-
f_2[:, :, :, :3] = cm(f_2[:, :, :, 3])[..., :3]
|
827 |
|
828 |
-
|
|
|
|
|
829 |
|
830 |
-
ecolors_2 = f_2
|
831 |
|
832 |
-
ax.voxels(x, y, z, filled_2, facecolors=f_2, edgecolors=.006 * ecolors_2)
|
833 |
-
ax.set_aspect('equal')
|
834 |
-
ax.set_zticks([0, N_PIX])
|
835 |
-
ax.set_xticks([0, N_PIX])
|
836 |
-
ax.set_yticks([0, N_PIX])
|
837 |
|
838 |
-
ax.set_zticklabels([f'{n/N_PIX:.2f}'[0:] for n in ax.get_zticks()])
|
839 |
-
ax.set_zlabel('valence', fontsize=10, labelpad=0)
|
840 |
-
ax.set_xticklabels([f'{n/N_PIX:.2f}' for n in ax.get_xticks()])
|
841 |
-
ax.set_xlabel('arousal', fontsize=10, labelpad=7)
|
842 |
-
# The y-axis rotation is corrected here from 275 to 90 degrees
|
843 |
-
ax.set_yticklabels([f'{1-n/N_PIX:.2f}' for n in ax.get_yticks()], rotation=90)
|
844 |
-
ax.set_ylabel('dominance', fontsize=10, labelpad=10)
|
845 |
-
ax.grid(False)
|
846 |
|
847 |
-
ax.plot([N_PIX, N_PIX], [0, N_PIX + .2], [N_PIX, N_PIX], 'g', linewidth=1)
|
848 |
-
ax.plot([0, N_PIX], [N_PIX, N_PIX + .24], [N_PIX, N_PIX], 'k', linewidth=1)
|
849 |
-
|
850 |
-
# Missing lines on the top face
|
851 |
-
ax.plot([0, 0], [0, N_PIX], [N_PIX, N_PIX], 'darkred', linewidth=1)
|
852 |
-
ax.plot([0, N_PIX], [0, 0], [N_PIX, N_PIX], 'darkblue', linewidth=1)
|
853 |
|
854 |
-
# Set pane colors after plotting the lines
|
855 |
-
# UPDATED: Replaced `w_xaxis` with `xaxis` and `w_yaxis` with `yaxis`.
|
856 |
-
ax.xaxis.set_pane_color((0.8, 0.8, 0.8, 0.5))
|
857 |
-
ax.yaxis.set_pane_color((0.8, 0.8, 0.8, 0.5))
|
858 |
-
ax.zaxis.set_pane_color((0.8, 0.8, 0.8, 0.0))
|
859 |
|
860 |
-
# Restore the limits to prevent the plot from expanding
|
861 |
-
ax.set_xlim(0, N_PIX)
|
862 |
-
ax.set_ylim(0, N_PIX)
|
863 |
-
ax.set_zlim(0, N_PIX)
|
864 |
-
# plt.show()
|
865 |
|
866 |
# TTS
|
867 |
# VOICES = [f'wav/{vox}' for vox in os.listdir('wav')]
|
@@ -1195,179 +495,8 @@ VOICES = [t[:-4] for t in VOICES] # crop .wav for visuals in gr.DropDown
|
|
1195 |
|
1196 |
_tts = StyleTTS2().to('cpu')
|
1197 |
|
1198 |
-
def only_greek_or_only_latin(text, lang='grc'):
|
1199 |
-
'''
|
1200 |
-
str: The converted string in the specified target script.
|
1201 |
-
Characters not found in any mapping are preserved as is.
|
1202 |
-
Latin accented characters in the input (e.g., 'É', 'ü') will
|
1203 |
-
be preserved in their lowercase form (e.g., 'é', 'ü') if
|
1204 |
-
converting to Latin.
|
1205 |
-
'''
|
1206 |
-
|
1207 |
-
# --- Mapping Dictionaries ---
|
1208 |
-
# Keys are in lowercase as input text is case-folded.
|
1209 |
-
# If the output needs to maintain original casing, additional logic is required.
|
1210 |
-
|
1211 |
-
latin_to_greek_map = {
|
1212 |
-
'a': 'α', 'b': 'β', 'g': 'γ', 'd': 'δ', 'e': 'ε',
|
1213 |
-
'ch': 'τσο', # Example of a multi-character Latin sequence
|
1214 |
-
'z': 'ζ', 'h': 'χ', 'i': 'ι', 'k': 'κ', 'l': 'λ',
|
1215 |
-
'm': 'μ', 'n': 'ν', 'x': 'ξ', 'o': 'ο', 'p': 'π',
|
1216 |
-
'v': 'β', 'sc': 'σκ', 'r': 'ρ', 's': 'σ', 't': 'τ',
|
1217 |
-
'u': 'ου', 'f': 'φ', 'c': 'σ', 'w': 'β', 'y': 'γ',
|
1218 |
-
}
|
1219 |
-
|
1220 |
-
greek_to_latin_map = {
|
1221 |
-
'ου': 'ou', # Prioritize common diphthongs/digraphs
|
1222 |
-
'α': 'a', 'β': 'v', 'γ': 'g', 'δ': 'd', 'ε': 'e',
|
1223 |
-
'ζ': 'z', 'η': 'i', 'θ': 'th', 'ι': 'i', 'κ': 'k',
|
1224 |
-
'λ': 'l', 'μ': 'm', 'ν': 'n', 'ξ': 'x', 'ο': 'o',
|
1225 |
-
'π': 'p', 'ρ': 'r', 'σ': 's', 'τ': 't', 'υ': 'y', # 'y' is a common transliteration for upsilon
|
1226 |
-
'φ': 'f', 'χ': 'ch', 'ψ': 'ps', 'ω': 'o',
|
1227 |
-
'ς': 's', # Final sigma
|
1228 |
-
}
|
1229 |
-
|
1230 |
-
cyrillic_to_latin_map = {
|
1231 |
-
'а': 'a', 'б': 'b', 'в': 'v', 'г': 'g', 'д': 'd', 'е': 'e', 'ё': 'yo', 'ж': 'zh',
|
1232 |
-
'з': 'z', 'и': 'i', 'й': 'y', 'к': 'k', 'л': 'l', 'м': 'm', 'н': 'n', 'о': 'o',
|
1233 |
-
'п': 'p', 'р': 'r', 'с': 's', 'т': 't', 'у': 'u', 'ф': 'f', 'х': 'kh', 'ц': 'ts',
|
1234 |
-
'ч': 'ch', 'ш': 'sh', 'щ': 'shch', 'ъ': '', 'ы': 'y', 'ь': '', 'э': 'e', 'ю': 'yu',
|
1235 |
-
'я': 'ya',
|
1236 |
-
}
|
1237 |
-
|
1238 |
-
# Direct Cyrillic to Greek mapping based on phonetic similarity.
|
1239 |
-
# These are approximations and may not be universally accepted transliterations.
|
1240 |
-
cyrillic_to_greek_map = {
|
1241 |
-
'а': 'α', 'б': 'β', 'в': 'β', 'г': 'γ', 'д': 'δ', 'е': 'ε', 'ё': 'ιο', 'ж': 'ζ',
|
1242 |
-
'з': 'ζ', 'и': 'ι', 'й': 'ι', 'κ': 'κ', 'λ': 'λ', 'м': 'μ', 'н': 'ν', 'о': 'ο',
|
1243 |
-
'π': 'π', 'ρ': 'ρ', 'σ': 'σ', 'τ': 'τ', 'у': 'ου', 'ф': 'φ', 'х': 'χ', 'ц': 'τσ',
|
1244 |
-
'ч': 'τσ', # or τζ depending on desired sound
|
1245 |
-
'ш': 'σ', 'щ': 'σ', # approximations
|
1246 |
-
'ъ': '', 'ы': 'ι', 'ь': '', 'э': 'ε', 'ю': 'ιου',
|
1247 |
-
'я': 'ια',
|
1248 |
-
}
|
1249 |
-
|
1250 |
-
# Convert the input text to lowercase, preserving accents for Latin characters.
|
1251 |
-
# casefold() is used for more robust caseless matching across Unicode characters.
|
1252 |
-
lowercased_text = text.lower() #casefold()
|
1253 |
-
output_chars = []
|
1254 |
-
current_index = 0
|
1255 |
-
|
1256 |
-
if lang == 'grc':
|
1257 |
-
# Combine all relevant maps for direct lookup to Greek
|
1258 |
-
conversion_map = {**latin_to_greek_map, **cyrillic_to_greek_map}
|
1259 |
-
|
1260 |
-
# Sort keys by length in reverse order to handle multi-character sequences first
|
1261 |
-
sorted_source_keys = sorted(
|
1262 |
-
list(latin_to_greek_map.keys()) + list(cyrillic_to_greek_map.keys()),
|
1263 |
-
key=len,
|
1264 |
-
reverse=True
|
1265 |
-
)
|
1266 |
-
|
1267 |
-
while current_index < len(lowercased_text):
|
1268 |
-
found_conversion = False
|
1269 |
-
for key in sorted_source_keys:
|
1270 |
-
if lowercased_text.startswith(key, current_index):
|
1271 |
-
output_chars.append(conversion_map[key])
|
1272 |
-
current_index += len(key)
|
1273 |
-
found_conversion = True
|
1274 |
-
break
|
1275 |
-
if not found_conversion:
|
1276 |
-
# If no specific mapping found, append the character as is.
|
1277 |
-
# This handles unmapped characters and already Greek characters.
|
1278 |
-
output_chars.append(lowercased_text[current_index])
|
1279 |
-
current_index += 1
|
1280 |
-
return ''.join(output_chars)
|
1281 |
-
|
1282 |
-
else: # Default to 'lat' conversion
|
1283 |
-
# Combine Greek to Latin and Cyrillic to Latin maps.
|
1284 |
-
# Cyrillic map keys will take precedence in case of overlap if defined after Greek.
|
1285 |
-
combined_to_latin_map = {**greek_to_latin_map, **cyrillic_to_latin_map}
|
1286 |
-
|
1287 |
-
# Sort all relevant source keys by length in reverse for replacement
|
1288 |
-
sorted_source_keys = sorted(
|
1289 |
-
list(greek_to_latin_map.keys()) + list(cyrillic_to_latin_map.keys()),
|
1290 |
-
key=len,
|
1291 |
-
reverse=True
|
1292 |
-
)
|
1293 |
-
|
1294 |
-
while current_index < len(lowercased_text):
|
1295 |
-
found_conversion = False
|
1296 |
-
for key in sorted_source_keys:
|
1297 |
-
if lowercased_text.startswith(key, current_index):
|
1298 |
-
latin_equivalent = combined_to_latin_map[key]
|
1299 |
-
|
1300 |
-
# Strip accents ONLY if the source character was from the Greek map.
|
1301 |
-
# This preserves accents on original Latin characters (like 'é')
|
1302 |
-
# and allows for intentional accent stripping from Greek transliterations.
|
1303 |
-
if key in greek_to_latin_map:
|
1304 |
-
normalized_latin = unicodedata.normalize('NFD', latin_equivalent)
|
1305 |
-
stripped_latin = ''.join(c for c in normalized_latin if not unicodedata.combining(c))
|
1306 |
-
output_chars.append(stripped_latin)
|
1307 |
-
else:
|
1308 |
-
output_chars.append(latin_equivalent)
|
1309 |
-
|
1310 |
-
current_index += len(key)
|
1311 |
-
found_conversion = True
|
1312 |
-
break
|
1313 |
-
|
1314 |
-
if not found_conversion:
|
1315 |
-
# If no conversion happened from Greek or Cyrillic, append the character as is.
|
1316 |
-
# This preserves existing Latin characters (including accented ones from input),
|
1317 |
-
# numbers, punctuation, and other symbols.
|
1318 |
-
output_chars.append(lowercased_text[current_index])
|
1319 |
-
current_index += 1
|
1320 |
-
|
1321 |
-
return ''.join(output_chars)
|
1322 |
-
|
1323 |
-
|
1324 |
-
def _stylett2(text='Hallov worlds Far over the',
|
1325 |
-
ref_s='wav/af_ZA_google-nwu_0184.wav'):
|
1326 |
-
|
1327 |
-
if text and text.strip():
|
1328 |
-
|
1329 |
-
text = only_greek_or_only_latin(text, lang='eng')
|
1330 |
-
|
1331 |
-
speech_audio = _tts.inference(text,
|
1332 |
-
ref_s=re_s)[0, 0, :].numpy() # 24 Khz
|
1333 |
-
|
1334 |
-
if speech_audio.shape[0] > 10:
|
1335 |
-
|
1336 |
-
speech_audio = audresample.resample(signal=speech_audio.astype(np.float32),
|
1337 |
-
original_rate=24000,
|
1338 |
-
target_rate=16000)[0, :] # 16 KHz
|
1339 |
-
|
1340 |
-
return speech_audio
|
1341 |
-
|
1342 |
-
|
1343 |
-
|
1344 |
-
|
1345 |
-
import gradio as gr
|
1346 |
-
|
1347 |
-
# Dummy functions to make the code runnable for demonstration
|
1348 |
-
def audionar_tts(text, choice, soundscape, kv):
|
1349 |
-
# This function would generate an audio file and return its path
|
1350 |
-
return "dummy_audio.wav"
|
1351 |
-
|
1352 |
-
def recognize(audio_input_path):
|
1353 |
-
# This function would analyze the audio and return results
|
1354 |
-
return "30", "Male", {"Angry": 0.9}
|
1355 |
-
|
1356 |
-
# Assuming these are defined elsewhere in the user's code
|
1357 |
-
language_names = ["English", "Spanish"]
|
1358 |
-
VOICES = ["Voice 1", "Voice 2"]
|
1359 |
|
1360 |
with gr.Blocks(theme='huggingface') as demo:
|
1361 |
-
tts_file = gr.State(value=None)
|
1362 |
-
audio_examples_state = gr.State(
|
1363 |
-
value=[
|
1364 |
-
["wav/female-46-neutral.wav"],
|
1365 |
-
["wav/female-20-happy.wav"],
|
1366 |
-
["wav/male-60-angry.wav"],
|
1367 |
-
["wav/male-27-sad.wav"],
|
1368 |
-
]
|
1369 |
-
)
|
1370 |
-
|
1371 |
with gr.Tab(label="TTS"):
|
1372 |
with gr.Row():
|
1373 |
text_input = gr.Textbox(
|
@@ -1394,56 +523,18 @@ with gr.Blocks(theme='huggingface') as demo:
|
|
1394 |
|
1395 |
output_audio = gr.Audio(label="TTS Output")
|
1396 |
|
1397 |
-
def generate_and_update_state(text, choice, soundscape, kv, current_examples):
|
1398 |
-
audio_path = audionar_tts(text, choice, soundscape, kv)
|
1399 |
-
updated_examples = current_examples + [[audio_path]]
|
1400 |
-
return audio_path, updated_examples
|
1401 |
-
|
1402 |
generate_button.click(
|
1403 |
-
fn=
|
1404 |
-
inputs=[text_input, choice_dropdown, soundscape_input, kv_input
|
1405 |
-
outputs=[output_audio
|
1406 |
)
|
1407 |
|
1408 |
-
with gr.Tab(label="
|
1409 |
with gr.Row():
|
1410 |
with gr.Column():
|
1411 |
-
|
1412 |
-
sources=["upload", "microphone"],
|
1413 |
-
type="filepath",
|
1414 |
-
label="Audio input",
|
1415 |
-
min_length=0.025,
|
1416 |
-
)
|
1417 |
-
|
1418 |
-
audio_examples = gr.Examples(
|
1419 |
-
examples=[], # Initialize with an empty list
|
1420 |
-
inputs=[input_audio_analysis],
|
1421 |
-
label="Examples from CREMA-D, ODbL v1.0 license",
|
1422 |
-
)
|
1423 |
|
1424 |
gr.Markdown("Only the first two seconds of the audio will be processed.")
|
1425 |
-
|
1426 |
-
submit_btn = gr.Button(value="Submit", variant="primary")
|
1427 |
-
with gr.Column():
|
1428 |
-
output_age = gr.Textbox(label="Age")
|
1429 |
-
output_gender = gr.Label(label="Gender")
|
1430 |
-
output_expression = gr.Image(label="Expression")
|
1431 |
-
|
1432 |
-
outputs = [output_age, output_gender, output_expression]
|
1433 |
-
|
1434 |
-
# Fix: This function should not update gr.Examples directly.
|
1435 |
-
# Instead, it should just return the updated examples list.
|
1436 |
-
# The `demo.load` event will handle the update.
|
1437 |
-
def load_examples_from_state(examples_list):
|
1438 |
-
return gr.Examples.update(examples=examples_list)
|
1439 |
-
|
1440 |
-
demo.load(
|
1441 |
-
fn=load_examples_from_state,
|
1442 |
-
inputs=[audio_examples_state],
|
1443 |
-
outputs=[audio_examples],
|
1444 |
-
queue=False,
|
1445 |
-
)
|
1446 |
|
1447 |
-
submit_btn.click(recognize, input_audio_analysis, outputs)
|
1448 |
|
1449 |
demo.launch(debug=True)
|
|
|
1 |
# -*- coding: utf-8 -*-
|
2 |
import typing
|
|
|
3 |
import gradio as gr
|
|
|
4 |
import numpy as np
|
5 |
import os
|
6 |
import torch
|
7 |
import torch.nn as nn
|
|
|
|
|
|
|
8 |
import audiofile
|
9 |
from tts import StyleTTS2
|
10 |
+
from textual import only_greek_or_only_latin, transliterate_number, fix_vocals
|
11 |
import audresample
|
|
|
|
|
|
|
12 |
import textwrap
|
13 |
import nltk
|
|
|
|
|
14 |
from audionar import VitsModel, VitsTokenizer
|
15 |
from audiocraft import AudioGen
|
16 |
|
|
|
22 |
nltk.download('punkt_tab', download_dir='./')
|
23 |
nltk.data.path.append('.')
|
24 |
|
|
|
25 |
|
26 |
|
|
|
27 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
|
30 |
language_names = ['Ancient greek',
|
|
|
37 |
|
38 |
|
39 |
def audionar_tts(text=None,
|
40 |
+
lang='Romanian',
|
41 |
soundscape='',
|
42 |
cache_lim=24):
|
43 |
|
|
|
53 |
'romanian': 'ron',
|
54 |
'serbian (approx.)': 'rmc-script_latin',
|
55 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
|
|
|
|
|
|
|
|
|
|
|
57 |
|
58 |
+
final_audio = None
|
59 |
|
|
|
60 |
|
61 |
+
if text is None or text.strip() == '':
|
62 |
+
text = 'No Audio or Txt Input'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
|
|
|
64 |
|
65 |
+
print(lang, lang in language_names)
|
|
|
66 |
|
67 |
+
if lang not in language_names: # StyleTTS2
|
68 |
|
69 |
+
text = only_greek_or_only_latin(text, lang='eng')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
|
71 |
+
x = _tts.inference(text,
|
72 |
+
ref_s='wav/' + lang + '.wav')[0, 0, :].numpy() # 24 Khz
|
73 |
+
|
74 |
+
if x.shape[0] > 10:
|
|
|
|
|
75 |
|
76 |
+
x = audresample.resample(signal=x.astype(np.float32),
|
77 |
+
original_rate=24000,
|
78 |
+
target_rate=16000)[0, :] # 16 KHz
|
79 |
|
80 |
+
else: # VITS
|
81 |
+
|
82 |
+
lang_code = lang_map.get(lang.lower(), lang.lower().split()[0].strip())
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
|
84 |
+
global cached_lang_code, cached_net_g, cached_tokenizer
|
85 |
|
86 |
+
if 'cached_lang_code' not in globals() or cached_lang_code != lang_code:
|
87 |
+
cached_lang_code = lang_code
|
88 |
+
cached_net_g = VitsModel.from_pretrained(f'facebook/mms-tts-{lang_code}').eval()
|
89 |
+
cached_tokenizer = VitsTokenizer.from_pretrained(f'facebook/mms-tts-{lang_code}')
|
90 |
|
91 |
+
net_g = cached_net_g
|
92 |
+
tokenizer = cached_tokenizer
|
93 |
+
text = only_greek_or_only_latin(text, lang=lang_code)
|
94 |
+
text = transliterate_number(text, lang=lang_code)
|
95 |
+
text = fix_vocals(text, lang=lang_code)
|
96 |
|
|
|
97 |
|
98 |
+
sentences = textwrap.wrap(text, width=439)
|
|
|
|
|
|
|
99 |
|
100 |
+
total_audio_parts = []
|
101 |
+
for sentence in sentences:
|
102 |
+
inputs = cached_tokenizer(sentence, return_tensors="pt")
|
103 |
+
with torch.no_grad():
|
104 |
+
audio_part = cached_net_g(
|
105 |
+
input_ids=inputs.input_ids,
|
106 |
+
attention_mask=inputs.attention_mask,
|
107 |
+
lang_code=lang_code,
|
108 |
+
)[0, :]
|
109 |
+
total_audio_parts.append(audio_part)
|
110 |
|
111 |
+
x = torch.cat(total_audio_parts).cpu().numpy()
|
112 |
|
113 |
|
114 |
+
if soundscape and soundscape.strip():
|
115 |
|
116 |
+
|
117 |
+
speech_duration_secs = len(x) / 16000
|
118 |
+
target_duration = max(speech_duration_secs + 0.74, 2.0)
|
119 |
|
|
|
120 |
|
121 |
+
background_audio = audiogen.generate(
|
122 |
+
soundscape,
|
123 |
+
duration=target_duration,
|
124 |
+
cache_lim=max(4, int(cache_lim)) # at least allow 10 A/R stEps
|
125 |
+
).numpy()
|
126 |
|
127 |
+
# PAD
|
128 |
+
|
129 |
+
len_speech = len(speech_audio)
|
130 |
+
len_background = len(background_audio)
|
131 |
+
|
132 |
+
if len_background > len_speech:
|
133 |
+
padding = np.zeros(len_background - len_speech,
|
134 |
+
dtype=np.float32)
|
135 |
+
speech_audio = np.concatenate([speech_audio, padding])
|
136 |
+
elif len_speech > len_background:
|
137 |
+
padding = np.zeros(len_speech - len_background,
|
138 |
+
dtype=np.float32)
|
139 |
+
background_audio = np.concatenate([background_audio, padding])
|
140 |
|
|
|
|
|
|
|
|
|
|
|
141 |
|
142 |
+
speech_audio = speech_audio[None, :]
|
143 |
+
background_audio = background_audio[None, :]
|
|
|
144 |
|
|
|
145 |
|
146 |
+
final_audio = np.concatenate([
|
147 |
+
0.49 * speech_audio + 0.51 * background_audio,
|
148 |
+
0.51 * background_audio + 0.49 * speech_audio
|
149 |
+
], 0)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
150 |
|
151 |
+
else:
|
152 |
+
|
153 |
+
final_audio = x
|
154 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
155 |
|
156 |
+
wavfile = '_vits_.wav'
|
157 |
+
audiofile.write(wavfile, final_audio, 16000)
|
158 |
+
return wavfile, wavfile # 2x file for [audio out & state to pass to the Emotion reco tAB]
|
159 |
|
|
|
160 |
|
|
|
|
|
|
|
|
|
|
|
161 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
162 |
|
|
|
|
|
|
|
|
|
|
|
|
|
163 |
|
|
|
|
|
|
|
|
|
|
|
164 |
|
|
|
|
|
|
|
|
|
|
|
165 |
|
166 |
# TTS
|
167 |
# VOICES = [f'wav/{vox}' for vox in os.listdir('wav')]
|
|
|
495 |
|
496 |
_tts = StyleTTS2().to('cpu')
|
497 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
498 |
|
499 |
with gr.Blocks(theme='huggingface') as demo:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
500 |
with gr.Tab(label="TTS"):
|
501 |
with gr.Row():
|
502 |
text_input = gr.Textbox(
|
|
|
523 |
|
524 |
output_audio = gr.Audio(label="TTS Output")
|
525 |
|
|
|
|
|
|
|
|
|
|
|
526 |
generate_button.click(
|
527 |
+
fn=audionar_tts,
|
528 |
+
inputs=[text_input, choice_dropdown, soundscape_input, kv_input],
|
529 |
+
outputs=[output_audio]
|
530 |
)
|
531 |
|
532 |
+
with gr.Tab(label="API"):
|
533 |
with gr.Row():
|
534 |
with gr.Column():
|
535 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
536 |
|
537 |
gr.Markdown("Only the first two seconds of the audio will be processed.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
538 |
|
|
|
539 |
|
540 |
demo.launch(debug=True)
|
textual.py
ADDED
@@ -0,0 +1,536 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
import unicodedata
|
3 |
+
from num2words import num2words
|
4 |
+
from num2word_greek.numbers2words import convert_numbers
|
5 |
+
|
6 |
+
def only_greek_or_only_latin(text, lang='grc'):
|
7 |
+
'''
|
8 |
+
str: The converted string in the specified target script.
|
9 |
+
Characters not found in any mapping are preserved as is.
|
10 |
+
Latin accented characters in the input (e.g., 'É', 'ü') will
|
11 |
+
be preserved in their lowercase form (e.g., 'é', 'ü') if
|
12 |
+
converting to Latin.
|
13 |
+
'''
|
14 |
+
|
15 |
+
# --- Mapping Dictionaries ---
|
16 |
+
# Keys are in lowercase as input text is case-folded.
|
17 |
+
# If the output needs to maintain original casing, additional logic is required.
|
18 |
+
|
19 |
+
latin_to_greek_map = {
|
20 |
+
'a': 'α', 'b': 'β', 'g': 'γ', 'd': 'δ', 'e': 'ε',
|
21 |
+
'ch': 'τσο', # Example of a multi-character Latin sequence
|
22 |
+
'z': 'ζ', 'h': 'χ', 'i': 'ι', 'k': 'κ', 'l': 'λ',
|
23 |
+
'm': 'μ', 'n': 'ν', 'x': 'ξ', 'o': 'ο', 'p': 'π',
|
24 |
+
'v': 'β', 'sc': 'σκ', 'r': 'ρ', 's': 'σ', 't': 'τ',
|
25 |
+
'u': 'ου', 'f': 'φ', 'c': 'σ', 'w': 'β', 'y': 'γ',
|
26 |
+
}
|
27 |
+
|
28 |
+
greek_to_latin_map = {
|
29 |
+
'ου': 'ou', # Prioritize common diphthongs/digraphs
|
30 |
+
'α': 'a', 'β': 'v', 'γ': 'g', 'δ': 'd', 'ε': 'e',
|
31 |
+
'ζ': 'z', 'η': 'i', 'θ': 'th', 'ι': 'i', 'κ': 'k',
|
32 |
+
'λ': 'l', 'μ': 'm', 'ν': 'n', 'ξ': 'x', 'ο': 'o',
|
33 |
+
'π': 'p', 'ρ': 'r', 'σ': 's', 'τ': 't', 'υ': 'y', # 'y' is a common transliteration for upsilon
|
34 |
+
'φ': 'f', 'χ': 'ch', 'ψ': 'ps', 'ω': 'o',
|
35 |
+
'ς': 's', # Final sigma
|
36 |
+
}
|
37 |
+
|
38 |
+
cyrillic_to_latin_map = {
|
39 |
+
'а': 'a', 'б': 'b', 'в': 'v', 'г': 'g', 'д': 'd', 'е': 'e', 'ё': 'yo', 'ж': 'zh',
|
40 |
+
'з': 'z', 'и': 'i', 'й': 'y', 'к': 'k', 'л': 'l', 'м': 'm', 'н': 'n', 'о': 'o',
|
41 |
+
'п': 'p', 'р': 'r', 'с': 's', 'т': 't', 'у': 'u', 'ф': 'f', 'х': 'kh', 'ц': 'ts',
|
42 |
+
'ч': 'ch', 'ш': 'sh', 'щ': 'shch', 'ъ': '', 'ы': 'y', 'ь': '', 'э': 'e', 'ю': 'yu',
|
43 |
+
'я': 'ya',
|
44 |
+
}
|
45 |
+
|
46 |
+
# Direct Cyrillic to Greek mapping based on phonetic similarity.
|
47 |
+
# These are approximations and may not be universally accepted transliterations.
|
48 |
+
cyrillic_to_greek_map = {
|
49 |
+
'а': 'α', 'б': 'β', 'в': 'β', 'г': 'γ', 'д': 'δ', 'е': 'ε', 'ё': 'ιο', 'ж': 'ζ',
|
50 |
+
'з': 'ζ', 'и': 'ι', 'й': 'ι', 'κ': 'κ', 'λ': 'λ', 'м': 'μ', 'н': 'ν', 'о': 'ο',
|
51 |
+
'π': 'π', 'ρ': 'ρ', 'σ': 'σ', 'τ': 'τ', 'у': 'ου', 'ф': 'φ', 'х': 'χ', 'ц': 'τσ',
|
52 |
+
'ч': 'τσ', # or τζ depending on desired sound
|
53 |
+
'ш': 'σ', 'щ': 'σ', # approximations
|
54 |
+
'ъ': '', 'ы': 'ι', 'ь': '', 'э': 'ε', 'ю': 'ιου',
|
55 |
+
'я': 'ια',
|
56 |
+
}
|
57 |
+
|
58 |
+
# Convert the input text to lowercase, preserving accents for Latin characters.
|
59 |
+
# casefold() is used for more robust caseless matching across Unicode characters.
|
60 |
+
lowercased_text = text.lower() #casefold()
|
61 |
+
output_chars = []
|
62 |
+
current_index = 0
|
63 |
+
|
64 |
+
if lang == 'grc':
|
65 |
+
# Combine all relevant maps for direct lookup to Greek
|
66 |
+
conversion_map = {**latin_to_greek_map, **cyrillic_to_greek_map}
|
67 |
+
|
68 |
+
# Sort keys by length in reverse order to handle multi-character sequences first
|
69 |
+
sorted_source_keys = sorted(
|
70 |
+
list(latin_to_greek_map.keys()) + list(cyrillic_to_greek_map.keys()),
|
71 |
+
key=len,
|
72 |
+
reverse=True
|
73 |
+
)
|
74 |
+
|
75 |
+
while current_index < len(lowercased_text):
|
76 |
+
found_conversion = False
|
77 |
+
for key in sorted_source_keys:
|
78 |
+
if lowercased_text.startswith(key, current_index):
|
79 |
+
output_chars.append(conversion_map[key])
|
80 |
+
current_index += len(key)
|
81 |
+
found_conversion = True
|
82 |
+
break
|
83 |
+
if not found_conversion:
|
84 |
+
# If no specific mapping found, append the character as is.
|
85 |
+
# This handles unmapped characters and already Greek characters.
|
86 |
+
output_chars.append(lowercased_text[current_index])
|
87 |
+
current_index += 1
|
88 |
+
return ''.join(output_chars)
|
89 |
+
|
90 |
+
else: # Default to 'lat' conversion
|
91 |
+
# Combine Greek to Latin and Cyrillic to Latin maps.
|
92 |
+
# Cyrillic map keys will take precedence in case of overlap if defined after Greek.
|
93 |
+
combined_to_latin_map = {**greek_to_latin_map, **cyrillic_to_latin_map}
|
94 |
+
|
95 |
+
# Sort all relevant source keys by length in reverse for replacement
|
96 |
+
sorted_source_keys = sorted(
|
97 |
+
list(greek_to_latin_map.keys()) + list(cyrillic_to_latin_map.keys()),
|
98 |
+
key=len,
|
99 |
+
reverse=True
|
100 |
+
)
|
101 |
+
|
102 |
+
while current_index < len(lowercased_text):
|
103 |
+
found_conversion = False
|
104 |
+
for key in sorted_source_keys:
|
105 |
+
if lowercased_text.startswith(key, current_index):
|
106 |
+
latin_equivalent = combined_to_latin_map[key]
|
107 |
+
|
108 |
+
# Strip accents ONLY if the source character was from the Greek map.
|
109 |
+
# This preserves accents on original Latin characters (like 'é')
|
110 |
+
# and allows for intentional accent stripping from Greek transliterations.
|
111 |
+
if key in greek_to_latin_map:
|
112 |
+
normalized_latin = unicodedata.normalize('NFD', latin_equivalent)
|
113 |
+
stripped_latin = ''.join(c for c in normalized_latin if not unicodedata.combining(c))
|
114 |
+
output_chars.append(stripped_latin)
|
115 |
+
else:
|
116 |
+
output_chars.append(latin_equivalent)
|
117 |
+
|
118 |
+
current_index += len(key)
|
119 |
+
found_conversion = True
|
120 |
+
break
|
121 |
+
|
122 |
+
if not found_conversion:
|
123 |
+
# If no conversion happened from Greek or Cyrillic, append the character as is.
|
124 |
+
# This preserves existing Latin characters (including accented ones from input),
|
125 |
+
# numbers, punctuation, and other symbols.
|
126 |
+
output_chars.append(lowercased_text[current_index])
|
127 |
+
current_index += 1
|
128 |
+
|
129 |
+
return ''.join(output_chars)
|
130 |
+
|
131 |
+
|
132 |
+
# =====================================================
|
133 |
+
#
|
134 |
+
|
135 |
+
def fix_vocals(text, lang='ron'):
|
136 |
+
|
137 |
+
# Longer phrases should come before shorter ones to prevent partial matches.
|
138 |
+
|
139 |
+
ron_replacements = {
|
140 |
+
'ţ': 'ț',
|
141 |
+
'ț': 'ts',
|
142 |
+
'î': 'u',
|
143 |
+
'â': 'a',
|
144 |
+
'ş': 's',
|
145 |
+
'w': 'oui',
|
146 |
+
'k': 'c',
|
147 |
+
'l': 'll',
|
148 |
+
# Math symbols
|
149 |
+
'sqrt': ' rădăcina pătrată din ',
|
150 |
+
'^': ' la puterea ',
|
151 |
+
'+': ' plus ',
|
152 |
+
' - ': ' minus ', # only replace if standalone so to not say minus if is a-b-c
|
153 |
+
'*': ' ori ', # times
|
154 |
+
'/': ' împărțit la ', # divided by
|
155 |
+
'=': ' egal cu ', # equals
|
156 |
+
'pi': ' pi ',
|
157 |
+
'<': ' mai mic decât ',
|
158 |
+
'>': ' mai mare decât',
|
159 |
+
'%': ' la sută ', # percent (from previous)
|
160 |
+
'(': ' paranteză deschisă ',
|
161 |
+
')': ' paranteză închisă ',
|
162 |
+
'[': ' paranteză pătrată deschisă ',
|
163 |
+
']': ' paranteză pătrată închisă ',
|
164 |
+
'{': ' acoladă deschisă ',
|
165 |
+
'}': ' acoladă închisă ',
|
166 |
+
'≠': ' nu este egal cu ',
|
167 |
+
'≤': ' mai mic sau egal cu ',
|
168 |
+
'≥': ' mai mare sau egal cu ',
|
169 |
+
'≈': ' aproximativ ',
|
170 |
+
'∞': ' infinit ',
|
171 |
+
'€': ' euro ',
|
172 |
+
'$': ' dolar ',
|
173 |
+
'£': ' liră ',
|
174 |
+
'&': ' și ', # and
|
175 |
+
'@': ' la ', # at
|
176 |
+
'#': ' diez ', # hash
|
177 |
+
'∑': ' sumă ',
|
178 |
+
'∫': ' integrală ',
|
179 |
+
'√': ' rădăcina pătrată a ', # more generic square root
|
180 |
+
}
|
181 |
+
|
182 |
+
eng_replacements = {
|
183 |
+
'wik': 'weaky',
|
184 |
+
'sh': 'ss',
|
185 |
+
'ch': 'ttss',
|
186 |
+
'oo': 'oeo',
|
187 |
+
# Math symbols for English
|
188 |
+
'sqrt': ' square root of ',
|
189 |
+
'^': ' to the power of ',
|
190 |
+
'+': ' plus ',
|
191 |
+
' - ': ' minus ',
|
192 |
+
'*': ' times ',
|
193 |
+
' / ': ' divided by ',
|
194 |
+
'=': ' equals ',
|
195 |
+
'pi': ' pi ',
|
196 |
+
'<': ' less than ',
|
197 |
+
'>': ' greater than ',
|
198 |
+
# Additional common math symbols from previous list
|
199 |
+
'%': ' percent ',
|
200 |
+
'(': ' open parenthesis ',
|
201 |
+
')': ' close parenthesis ',
|
202 |
+
'[': ' open bracket ',
|
203 |
+
']': ' close bracket ',
|
204 |
+
'{': ' open curly brace ',
|
205 |
+
'}': ' close curly brace ',
|
206 |
+
'∑': ' sum ',
|
207 |
+
'∫': ' integral ',
|
208 |
+
'√': ' square root of ',
|
209 |
+
'≠': ' not equals ',
|
210 |
+
'≤': ' less than or equals ',
|
211 |
+
'≥': ' greater than or equals ',
|
212 |
+
'≈': ' approximately ',
|
213 |
+
'∞': ' infinity ',
|
214 |
+
'€': ' euro ',
|
215 |
+
'$': ' dollar ',
|
216 |
+
'£': ' pound ',
|
217 |
+
'&': ' and ',
|
218 |
+
'@': ' at ',
|
219 |
+
'#': ' hash ',
|
220 |
+
}
|
221 |
+
|
222 |
+
serbian_replacements = {
|
223 |
+
'rn': 'rrn',
|
224 |
+
'ć': 'č',
|
225 |
+
'c': 'č',
|
226 |
+
'đ': 'd',
|
227 |
+
'j': 'i',
|
228 |
+
'l': 'lll',
|
229 |
+
'w': 'v',
|
230 |
+
# https://huggingface.co/facebook/mms-tts-rmc-script_latin
|
231 |
+
'sqrt': 'kvadratni koren iz',
|
232 |
+
'^': ' na stepen ',
|
233 |
+
'+': ' plus ',
|
234 |
+
' - ': ' minus ',
|
235 |
+
'*': ' puta ',
|
236 |
+
' / ': ' podeljeno sa ',
|
237 |
+
'=': ' jednako ',
|
238 |
+
'pi': ' pi ',
|
239 |
+
'<': ' manje od ',
|
240 |
+
'>': ' veće od ',
|
241 |
+
'%': ' procenat ',
|
242 |
+
'(': ' otvorena zagrada ',
|
243 |
+
')': ' zatvorena zagrada ',
|
244 |
+
'[': ' otvorena uglasta zagrada ',
|
245 |
+
']': ' zatvorena uglasta zagrada ',
|
246 |
+
'{': ' otvorena vitičasta zagrada ',
|
247 |
+
'}': ' zatvorena vitičasta zagrada ',
|
248 |
+
'∑': ' suma ',
|
249 |
+
'∫': ' integral ',
|
250 |
+
'√': ' kvadratni koren ',
|
251 |
+
'≠': ' nije jednako ',
|
252 |
+
'≤': ' manje ili jednako od ',
|
253 |
+
'≥': ' veće ili jednako od ',
|
254 |
+
'≈': ' približno ',
|
255 |
+
'∞': ' beskonačnost ',
|
256 |
+
'€': ' evro ',
|
257 |
+
'$': ' dolar ',
|
258 |
+
'£': ' funta ',
|
259 |
+
'&': ' i ',
|
260 |
+
'@': ' et ',
|
261 |
+
'#': ' taraba ',
|
262 |
+
# Others
|
263 |
+
# 'rn': 'rrn',
|
264 |
+
# 'ć': 'č',
|
265 |
+
# 'c': 'č',
|
266 |
+
# 'đ': 'd',
|
267 |
+
# 'l': 'le',
|
268 |
+
# 'ij': 'i',
|
269 |
+
# 'ji': 'i',
|
270 |
+
# 'j': 'i',
|
271 |
+
# 'služ': 'sloooozz', # 'službeno'
|
272 |
+
# 'suver': 'siuveeerra', # 'suverena'
|
273 |
+
# 'država': 'dirrezav', # 'država'
|
274 |
+
# 'iči': 'ici', # 'Graniči'
|
275 |
+
# 's ': 'se', # a s with space
|
276 |
+
# 'q': 'ku',
|
277 |
+
# 'w': 'aou',
|
278 |
+
# 'z': 's',
|
279 |
+
# "š": "s",
|
280 |
+
# 'th': 'ta',
|
281 |
+
# 'v': 'vv',
|
282 |
+
# "ć": "č",
|
283 |
+
# "đ": "ď",
|
284 |
+
# "lj": "ľ",
|
285 |
+
# "nj": "ň",
|
286 |
+
# "ž": "z",
|
287 |
+
# "c": "č"
|
288 |
+
}
|
289 |
+
|
290 |
+
deu_replacements = {
|
291 |
+
'sch': 'sh',
|
292 |
+
'ch': 'kh',
|
293 |
+
'ie': 'ee',
|
294 |
+
'ei': 'ai',
|
295 |
+
'ä': 'ae',
|
296 |
+
'ö': 'oe',
|
297 |
+
'ü': 'ue',
|
298 |
+
'ß': 'ss',
|
299 |
+
# Math symbols for German
|
300 |
+
'sqrt': ' Quadratwurzel aus ',
|
301 |
+
'^': ' hoch ',
|
302 |
+
'+': ' plus ',
|
303 |
+
' - ': ' minus ',
|
304 |
+
'*': ' mal ',
|
305 |
+
' / ': ' geteilt durch ',
|
306 |
+
'=': ' gleich ',
|
307 |
+
'pi': ' pi ',
|
308 |
+
'<': ' kleiner als ',
|
309 |
+
'>': ' größer als',
|
310 |
+
# Additional common math symbols from previous list
|
311 |
+
'%': ' prozent ',
|
312 |
+
'(': ' Klammer auf ',
|
313 |
+
')': ' Klammer zu ',
|
314 |
+
'[': ' eckige Klammer auf ',
|
315 |
+
']': ' eckige Klammer zu ',
|
316 |
+
'{': ' geschweifte Klammer auf ',
|
317 |
+
'}': ' geschweifte Klammer zu ',
|
318 |
+
'∑': ' Summe ',
|
319 |
+
'∫': ' Integral ',
|
320 |
+
'√': ' Quadratwurzel ',
|
321 |
+
'≠': ' ungleich ',
|
322 |
+
'≤': ' kleiner oder gleich ',
|
323 |
+
'≥': ' größer oder gleich ',
|
324 |
+
'≈': ' ungefähr ',
|
325 |
+
'∞': ' unendlich ',
|
326 |
+
'€': ' euro ',
|
327 |
+
'$': ' dollar ',
|
328 |
+
'£': ' pfund ',
|
329 |
+
'&': ' und ',
|
330 |
+
'@': ' at ', # 'Klammeraffe' is also common but 'at' is simpler
|
331 |
+
'#': ' raute ',
|
332 |
+
}
|
333 |
+
|
334 |
+
fra_replacements = {
|
335 |
+
# French specific phonetic replacements (add as needed)
|
336 |
+
# e.g., 'ç': 's', 'é': 'e', etc.
|
337 |
+
'w': 'v',
|
338 |
+
# Math symbols for French
|
339 |
+
'sqrt': ' racine carrée de ',
|
340 |
+
'^': ' à la puissance ',
|
341 |
+
'+': ' plus ',
|
342 |
+
' - ': ' moins ', # tiré ;
|
343 |
+
'*': ' fois ',
|
344 |
+
' / ': ' divisé par ',
|
345 |
+
'=': ' égale ',
|
346 |
+
'pi': ' pi ',
|
347 |
+
'<': ' inférieur à ',
|
348 |
+
'>': ' supérieur à ',
|
349 |
+
# Add more common math symbols as needed for French
|
350 |
+
'%': ' pour cent ',
|
351 |
+
'(': ' parenthèse ouverte ',
|
352 |
+
')': ' parenthèse fermée ',
|
353 |
+
'[': ' crochet ouvert ',
|
354 |
+
']': ' crochet fermé ',
|
355 |
+
'{': ' accolade ouverte ',
|
356 |
+
'}': ' accolade fermée ',
|
357 |
+
'∑': ' somme ',
|
358 |
+
'∫': ' intégrale ',
|
359 |
+
'√': ' racine carrée ',
|
360 |
+
'≠': ' n\'égale pas ',
|
361 |
+
'≤': ' inférieur ou égal à ',
|
362 |
+
'≥': ' supérieur ou égal à ',
|
363 |
+
'≈': ' approximativement ',
|
364 |
+
'∞': ' infini ',
|
365 |
+
'€': ' euro ',
|
366 |
+
'$': ' dollar ',
|
367 |
+
'£': ' livre ',
|
368 |
+
'&': ' et ',
|
369 |
+
'@': ' arobase ',
|
370 |
+
'#': ' dièse ',
|
371 |
+
}
|
372 |
+
|
373 |
+
hun_replacements = {
|
374 |
+
# Hungarian specific phonetic replacements (add as needed)
|
375 |
+
# e.g., 'á': 'a', 'é': 'e', etc.
|
376 |
+
'ch': 'ts',
|
377 |
+
'cs': 'tz',
|
378 |
+
'g': 'gk',
|
379 |
+
'w': 'v',
|
380 |
+
'z': 'zz',
|
381 |
+
# Math symbols for Hungarian
|
382 |
+
'sqrt': ' négyzetgyök ',
|
383 |
+
'^': ' hatvány ',
|
384 |
+
'+': ' plusz ',
|
385 |
+
' - ': ' mínusz ',
|
386 |
+
'*': ' szorozva ',
|
387 |
+
' / ': ' osztva ',
|
388 |
+
'=': ' egyenlő ',
|
389 |
+
'pi': ' pi ',
|
390 |
+
'<': ' kisebb mint ',
|
391 |
+
'>': ' nagyobb mint ',
|
392 |
+
# Add more common math symbols as needed for Hungarian
|
393 |
+
'%': ' százalék ',
|
394 |
+
'(': ' nyitó zárójel ',
|
395 |
+
')': ' záró zárójel ',
|
396 |
+
'[': ' nyitó szögletes zárójel ',
|
397 |
+
']': ' záró szögletes zárójel ',
|
398 |
+
'{': ' nyitó kapcsos zárójel ',
|
399 |
+
'}': ' záró kapcsos zárójel ',
|
400 |
+
'∑': ' szumma ',
|
401 |
+
'∫': ' integrál ',
|
402 |
+
'√': ' négyzetgyök ',
|
403 |
+
'≠': ' nem egyenlő ',
|
404 |
+
'≤': ' kisebb vagy egyenlő ',
|
405 |
+
'≥': ' nagyobb vagy egyenlő ',
|
406 |
+
'≈': ' körülbelül ',
|
407 |
+
'∞': ' végtelen ',
|
408 |
+
'€': ' euró ',
|
409 |
+
'$': ' dollár ',
|
410 |
+
'£': ' font ',
|
411 |
+
'&': ' és ',
|
412 |
+
'@': ' kukac ',
|
413 |
+
'#': ' kettőskereszt ',
|
414 |
+
}
|
415 |
+
|
416 |
+
grc_replacements = {
|
417 |
+
# Ancient Greek specific phonetic replacements (add as needed)
|
418 |
+
# These are more about transliterating Greek letters if they are in the input text.
|
419 |
+
# Math symbols for Ancient Greek (literal translations)
|
420 |
+
'sqrt': ' τετραγωνικὴ ῥίζα ',
|
421 |
+
'^': ' εἰς τὴν δύναμιν ',
|
422 |
+
'+': ' σὺν ',
|
423 |
+
' - ': ' χωρὶς ',
|
424 |
+
'*': ' πο��λάκις ',
|
425 |
+
' / ': ' διαιρέω ',
|
426 |
+
'=': ' ἴσον ',
|
427 |
+
'pi': ' πῖ ',
|
428 |
+
'<': ' ἔλαττον ',
|
429 |
+
'>': ' μεῖζον ',
|
430 |
+
# Add more common math symbols as needed for Ancient Greek
|
431 |
+
'%': ' τοῖς ἑκατόν ', # tois hekaton - 'of the hundred'
|
432 |
+
'(': ' ἀνοικτὴ παρένθεσις ',
|
433 |
+
')': ' κλειστὴ παρένθεσις ',
|
434 |
+
'[': ' ἀνοικτὴ ἀγκύλη ',
|
435 |
+
']': ' κλειστὴ ἀγκύλη ',
|
436 |
+
'{': ' ἀνοικτὴ σγουρὴ ἀγκύλη ',
|
437 |
+
'}': ' κλειστὴ σγουρὴ ἀγκύλη ',
|
438 |
+
'∑': ' ἄθροισμα ',
|
439 |
+
'∫': ' ὁλοκλήρωμα ',
|
440 |
+
'√': ' τετραγωνικὴ ῥίζα ',
|
441 |
+
'≠': ' οὐκ ἴσον ',
|
442 |
+
'≤': ' ἔλαττον ἢ ἴσον ',
|
443 |
+
'≥': ' μεῖζον ἢ ἴσον ',
|
444 |
+
'≈': ' περίπου ',
|
445 |
+
'∞': ' ἄπειρον ',
|
446 |
+
'€': ' εὐρώ ',
|
447 |
+
'$': ' δολάριον ',
|
448 |
+
'£': ' λίρα ',
|
449 |
+
'&': ' καὶ ',
|
450 |
+
'@': ' ἀτ ', # at
|
451 |
+
'#': ' δίεση ', # hash
|
452 |
+
}
|
453 |
+
|
454 |
+
|
455 |
+
# Select the appropriate replacement dictionary based on the language
|
456 |
+
replacements_map = {
|
457 |
+
'grc': grc_replacements,
|
458 |
+
'ron': ron_replacements,
|
459 |
+
'eng': eng_replacements,
|
460 |
+
'deu': deu_replacements,
|
461 |
+
'fra': fra_replacements,
|
462 |
+
'hun': hun_replacements,
|
463 |
+
'rmc-script_latin': serbian_replacements,
|
464 |
+
}
|
465 |
+
|
466 |
+
current_replacements = replacements_map.get(lang)
|
467 |
+
if current_replacements:
|
468 |
+
# Sort replacements by length of the key in descending order.
|
469 |
+
# This is crucial for correctly replacing multi-character strings (like 'sqrt', 'sch')
|
470 |
+
# before their shorter substrings ('s', 'ch', 'q', 'r', 't').
|
471 |
+
sorted_replacements = sorted(current_replacements.items(), key=lambda item: len(item[0]), reverse=True)
|
472 |
+
for old, new in sorted_replacements:
|
473 |
+
text = text.replace(old, new)
|
474 |
+
return text
|
475 |
+
else:
|
476 |
+
# If the language is not supported, return the original text
|
477 |
+
print(f"Warning: Language '{lang}' not supported for text replacement. Returning original text.")
|
478 |
+
return text
|
479 |
+
|
480 |
+
|
481 |
+
def _num2words(text='01234', lang=None):
|
482 |
+
if lang == 'grc':
|
483 |
+
return convert_numbers(text)
|
484 |
+
return num2words(text, lang=lang) # HAS TO BE kwarg lang=lang
|
485 |
+
|
486 |
+
|
487 |
+
def transliterate_number(number_string,
|
488 |
+
lang=None):
|
489 |
+
if lang == 'rmc-script_latin':
|
490 |
+
lang = 'sr'
|
491 |
+
exponential_pronoun = ' puta deset na stepen od '
|
492 |
+
comma = ' tačka '
|
493 |
+
elif lang == 'ron':
|
494 |
+
lang = 'ro'
|
495 |
+
exponential_pronoun = ' tízszer a erejéig '
|
496 |
+
comma = ' virgulă '
|
497 |
+
elif lang == 'hun':
|
498 |
+
lang = 'hu'
|
499 |
+
exponential_pronoun = ' tízszer a erejéig '
|
500 |
+
comma = ' virgula '
|
501 |
+
elif lang == 'deu':
|
502 |
+
exponential_pronoun = ' mal zehn hoch '
|
503 |
+
comma = ' komma '
|
504 |
+
elif lang == 'fra':
|
505 |
+
lang = 'fr'
|
506 |
+
exponential_pronoun = ' puissance '
|
507 |
+
comma = 'virgule'
|
508 |
+
elif lang == 'grc':
|
509 |
+
exponential_pronoun = ' εις την δυναμην του '
|
510 |
+
comma = 'κομμα'
|
511 |
+
else:
|
512 |
+
lang = lang[:2]
|
513 |
+
exponential_pronoun = ' times ten to the power of '
|
514 |
+
comma = ' point '
|
515 |
+
|
516 |
+
def replace_number(match):
|
517 |
+
prefix = match.group(1) or ""
|
518 |
+
number_part = match.group(2)
|
519 |
+
suffix = match.group(5) or ""
|
520 |
+
|
521 |
+
try:
|
522 |
+
if 'e' in number_part.lower():
|
523 |
+
base, exponent = number_part.lower().split('e')
|
524 |
+
words = _num2words(base, lang=lang) + exponential_pronoun + _num2words(exponent, lang=lang)
|
525 |
+
elif '.' in number_part:
|
526 |
+
integer_part, decimal_part = number_part.split('.')
|
527 |
+
words = _num2words(integer_part, lang=lang) + comma + " ".join(
|
528 |
+
[_num2words(digit, lang=lang) for digit in decimal_part])
|
529 |
+
else:
|
530 |
+
words = _num2words(number_part, lang=lang)
|
531 |
+
return prefix + words + suffix
|
532 |
+
except ValueError:
|
533 |
+
return match.group(0) # Return original if conversion fails
|
534 |
+
|
535 |
+
pattern = r'([^\d]*)(\d+(\.\d+)?([Ee][+-]?\d+)?)([^\d]*)'
|
536 |
+
return re.sub(pattern, replace_number, number_string)
|