Spaces:
Running
Running
soundscaps
Browse files- app.py +496 -82
- audiocraft.py +724 -0
- requirements.txt +6 -4
app.py
CHANGED
@@ -21,6 +21,11 @@ import nltk
|
|
21 |
from num2words import num2words
|
22 |
from num2word_greek.numbers2words import convert_numbers
|
23 |
from audionar import VitsModel, VitsTokenizer
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
nltk.download('punkt', download_dir='./')
|
26 |
nltk.download('punkt_tab', download_dir='./')
|
@@ -443,97 +448,118 @@ language_names = ['Ancient greek',
|
|
443 |
|
444 |
|
445 |
def audionar_tts(text=None,
|
446 |
-
lang='romanian'
|
|
|
|
|
447 |
|
448 |
# https://huggingface.co/dkounadis/artificial-styletts2/blob/main/msinference.py
|
449 |
|
450 |
-
lang = lang.lower()
|
451 |
-
|
452 |
-
# https://huggingface.co/spaces/mms-meta/MMS
|
453 |
-
|
454 |
-
if 'hun' in lang:
|
455 |
-
|
456 |
-
lang_code = 'hun'
|
457 |
|
458 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
459 |
|
460 |
-
|
461 |
-
lang_code = 'rmc-script_latin'
|
462 |
|
463 |
-
|
|
|
|
|
|
|
464 |
|
465 |
-
|
|
|
466 |
|
467 |
-
|
|
|
|
|
|
|
468 |
|
469 |
-
lang_code = 'deu'
|
470 |
|
471 |
-
|
|
|
472 |
|
473 |
-
|
|
|
|
|
474 |
|
475 |
-
elif 'eng' in lang:
|
476 |
|
477 |
-
|
478 |
|
479 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
480 |
|
481 |
-
|
482 |
|
483 |
-
|
|
|
484 |
|
485 |
-
lang_code = lang.split()[0].strip() # latin & future option
|
486 |
|
487 |
-
|
|
|
488 |
|
489 |
-
text = only_greek_or_only_latin(text, lang=lang_code) # assure gr-chars if lang=='grc' / latin if lang!='grc'
|
490 |
|
491 |
-
|
|
|
|
|
|
|
|
|
492 |
|
493 |
-
|
494 |
|
495 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
496 |
|
497 |
-
|
|
|
|
|
498 |
|
499 |
-
|
500 |
-
|
501 |
-
global cached_lang_code, cached_net_g, cached_tokenizer
|
502 |
-
|
503 |
-
if 'cached_lang_code' not in globals() or cached_lang_code != lang_code:
|
504 |
-
cached_lang_code = lang_code
|
505 |
-
cached_net_g = VitsModel.from_pretrained(f'facebook/mms-tts-{lang_code}').eval().to(device)
|
506 |
-
cached_tokenizer = VitsTokenizer.from_pretrained(f'facebook/mms-tts-{lang_code}')
|
507 |
-
|
508 |
-
net_g = cached_net_g
|
509 |
-
tokenizer = cached_tokenizer
|
510 |
-
|
511 |
-
total_audio = []
|
512 |
|
513 |
-
|
514 |
-
text = textwrap.wrap(text, width=439)
|
515 |
-
|
516 |
-
for _t in text:
|
517 |
-
inputs = tokenizer(_t, return_tensors="pt")
|
518 |
-
with torch.no_grad():
|
519 |
-
x = net_g(input_ids=inputs.input_ids.to(device),
|
520 |
-
attention_mask=inputs.attention_mask.to(device),
|
521 |
-
lang_code=lang_code,
|
522 |
-
)[0, :]
|
523 |
-
total_audio.append(x)
|
524 |
|
525 |
-
print(f'\n\n_______________________________ {_t} {x.shape=}')
|
526 |
|
527 |
-
|
528 |
-
|
529 |
-
tmp_file = f'_speech.wav'
|
530 |
-
|
531 |
-
audiofile.write(tmp_file, x, 16000)
|
532 |
-
|
533 |
-
return tmp_file
|
534 |
-
|
535 |
-
|
536 |
-
# --
|
537 |
|
538 |
|
539 |
device = 0 if torch.cuda.is_available() else "cpu"
|
@@ -838,7 +864,334 @@ def plot_expression(arousal, dominance, valence):
|
|
838 |
# plt.show()
|
839 |
|
840 |
# TTS
|
841 |
-
VOICES = [f'wav/{vox}' for vox in os.listdir('wav')]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
842 |
_tts = StyleTTS2().to('cpu')
|
843 |
|
844 |
def only_greek_or_only_latin(text, lang='grc'):
|
@@ -968,23 +1321,78 @@ def only_greek_or_only_latin(text, lang='grc'):
|
|
968 |
|
969 |
|
970 |
def other_tts(text='Hallov worlds Far over the',
|
971 |
-
ref_s='wav/af_ZA_google-nwu_0184.wav'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
972 |
|
973 |
-
text = only_greek_or_only_latin(text, lang='eng')
|
974 |
|
975 |
-
|
|
|
|
|
976 |
|
977 |
-
|
978 |
-
|
|
|
979 |
|
980 |
-
|
|
|
|
|
981 |
|
982 |
-
|
|
|
983 |
|
984 |
-
|
|
|
|
|
985 |
|
986 |
-
return tmp_file
|
987 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
988 |
|
989 |
def update_selected_voice(voice_filename):
|
990 |
return 'wav/' + voice_filename + '.wav'
|
@@ -1035,11 +1443,19 @@ with gr.Blocks(theme='huggingface', css=css_buttons) as demo:
|
|
1035 |
# Main input and output components
|
1036 |
with gr.Row():
|
1037 |
text_input = gr.Textbox(
|
1038 |
-
label="
|
1039 |
placeholder="Type your message here...",
|
1040 |
lines=4,
|
1041 |
value="Farover the misty mountains cold too dungeons deep and caverns old.",
|
1042 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1043 |
generate_button = gr.Button("Generate Audio", variant="primary")
|
1044 |
|
1045 |
output_audio = gr.Audio(label="TTS Output")
|
@@ -1066,7 +1482,7 @@ with gr.Blocks(theme='huggingface', css=css_buttons) as demo:
|
|
1066 |
|
1067 |
generate_button.click(
|
1068 |
fn=other_tts,
|
1069 |
-
inputs=[text_input, selected_voice],
|
1070 |
outputs=output_audio
|
1071 |
)
|
1072 |
|
@@ -1108,11 +1524,9 @@ with gr.Blocks(theme='huggingface', css=css_buttons) as demo:
|
|
1108 |
value='Η γρηγορη καφετι αλεπου πειδαει πανω απο τον τεμπελη σκυλο.',
|
1109 |
label="Type text for TTS"
|
1110 |
)
|
1111 |
-
lang_dropdown = gr.Dropdown(
|
1112 |
-
|
1113 |
-
|
1114 |
-
value="Ancient greek",
|
1115 |
-
)
|
1116 |
|
1117 |
# Create a button to trigger the TTS function
|
1118 |
tts_button = gr.Button("Generate Audio")
|
@@ -1123,7 +1537,7 @@ with gr.Blocks(theme='huggingface', css=css_buttons) as demo:
|
|
1123 |
# Link the button click event to the mms_tts function
|
1124 |
tts_button.click(
|
1125 |
fn=audionar_tts,
|
1126 |
-
inputs=[text_input, lang_dropdown],
|
1127 |
outputs=audio_output
|
1128 |
)
|
1129 |
|
|
|
21 |
from num2words import num2words
|
22 |
from num2word_greek.numbers2words import convert_numbers
|
23 |
from audionar import VitsModel, VitsTokenizer
|
24 |
+
from audiocraft import AudioGen
|
25 |
+
|
26 |
+
|
27 |
+
|
28 |
+
audiogen = AudioGen().eval().to('cpu')
|
29 |
|
30 |
nltk.download('punkt', download_dir='./')
|
31 |
nltk.download('punkt_tab', download_dir='./')
|
|
|
448 |
|
449 |
|
450 |
def audionar_tts(text=None,
|
451 |
+
lang='romanian',
|
452 |
+
soundscape='',
|
453 |
+
cache_lim=24):
|
454 |
|
455 |
# https://huggingface.co/dkounadis/artificial-styletts2/blob/main/msinference.py
|
456 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
457 |
|
458 |
+
lang_map = {
|
459 |
+
'ancient greek': 'grc',
|
460 |
+
'english': 'eng',
|
461 |
+
'deutsch': 'deu',
|
462 |
+
'french': 'fra',
|
463 |
+
'hungarian': 'hun',
|
464 |
+
'romanian': 'ron',
|
465 |
+
'serbian (approx.)': 'rmc-script_latin',
|
466 |
+
}
|
467 |
+
lang_code = lang_map.get(lang.lower(), lang.lower().split()[0].strip())
|
468 |
|
469 |
+
global cached_lang_code, cached_net_g, cached_tokenizer
|
|
|
470 |
|
471 |
+
if 'cached_lang_code' not in globals() or cached_lang_code != lang_code:
|
472 |
+
cached_lang_code = lang_code
|
473 |
+
cached_net_g = VitsModel.from_pretrained(f'facebook/mms-tts-{lang_code}').eval()
|
474 |
+
cached_tokenizer = VitsTokenizer.from_pretrained(f'facebook/mms-tts-{lang_code}')
|
475 |
|
476 |
+
net_g = cached_net_g
|
477 |
+
tokenizer = cached_tokenizer
|
478 |
|
479 |
+
total_audio = []
|
480 |
+
|
481 |
+
final_audio = None
|
482 |
+
speech_audio = None
|
483 |
|
|
|
484 |
|
485 |
+
if text and text.strip():
|
486 |
+
|
487 |
|
488 |
+
text = only_greek_or_only_latin(text, lang=lang_code)
|
489 |
+
text = transliterate_number(text, lang=lang_code)
|
490 |
+
text = fix_vocals(text, lang=lang_code)
|
491 |
|
|
|
492 |
|
493 |
+
sentences = textwrap.wrap(text, width=439)
|
494 |
|
495 |
+
total_audio_parts = []
|
496 |
+
for sentence in sentences:
|
497 |
+
inputs = cached_tokenizer(sentence, return_tensors="pt")
|
498 |
+
with torch.no_grad():
|
499 |
+
audio_part = cached_net_g(
|
500 |
+
input_ids=inputs.input_ids.to(device),
|
501 |
+
attention_mask=inputs.attention_mask.to(device),
|
502 |
+
lang_code=lang_code,
|
503 |
+
)[0, :]
|
504 |
+
total_audio_parts.append(audio_part)
|
505 |
|
506 |
+
speech_audio = torch.cat(total_audio_parts).cpu().numpy()
|
507 |
|
508 |
+
# AudioGen
|
509 |
+
if soundscape and soundscape.strip():
|
510 |
|
|
|
511 |
|
512 |
+
speech_duration_secs = len(speech_audio) / 16000 if speech_audio is not None else 0
|
513 |
+
target_duration = max(speech_duration_secs + 0.74, 2.0)
|
514 |
|
|
|
515 |
|
516 |
+
background_audio = audiogen.generate(
|
517 |
+
soundscape,
|
518 |
+
duration=target_duration,
|
519 |
+
cache_lim=max(4, int(cache_lim)) # at least allow 10 A/R stEps
|
520 |
+
).numpy()
|
521 |
|
522 |
+
if speech_audio is not None:
|
523 |
|
524 |
+
len_speech = len(speech_audio)
|
525 |
+
len_background = len(background_audio)
|
526 |
+
|
527 |
+
if len_background > len_speech:
|
528 |
+
padding = np.zeros(len_background - len_speech,
|
529 |
+
dtype=np.float32)
|
530 |
+
speech_audio = np.concatenate([speech_audio, padding])
|
531 |
+
elif len_speech > len_background:
|
532 |
+
padding = np.zeros(len_speech - len_background,
|
533 |
+
dtype=np.float32)
|
534 |
+
background_audio = np.concatenate([background_audio, padding])
|
535 |
+
|
536 |
+
|
537 |
+
speech_audio_stereo = speech_audio[None, :]
|
538 |
+
background_audio_stereo = background_audio[None, :]
|
539 |
+
|
540 |
+
|
541 |
+
final_audio = np.concatenate([
|
542 |
+
0.49 * speech_audio_stereo + 0.51 * background_audio_stereo,
|
543 |
+
0.51 * background_audio_stereo + 0.49 * speech_audio_stereo
|
544 |
+
], 0)
|
545 |
+
else:
|
546 |
+
final_audio = background_audio
|
547 |
+
|
548 |
+
# If no soundscape, use the speech audio as is.
|
549 |
+
elif speech_audio is not None:
|
550 |
+
final_audio = speech_audio
|
551 |
|
552 |
+
# If both inputs are empty, create a 2s silent audio file.
|
553 |
+
if final_audio is None:
|
554 |
+
final_audio = np.zeros(16000 * 2, dtype=np.float32)
|
555 |
|
556 |
+
wavfile = '_vits_.wav'
|
557 |
+
audiofile.write(wavfile, final_audio, 16000)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
558 |
|
559 |
+
return wavfile
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
560 |
|
|
|
561 |
|
562 |
+
# -- EXPRESSIO
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
563 |
|
564 |
|
565 |
device = 0 if torch.cuda.is_available() else "cpu"
|
|
|
864 |
# plt.show()
|
865 |
|
866 |
# TTS
|
867 |
+
# VOICES = [f'wav/{vox}' for vox in os.listdir('wav')]
|
868 |
+
# add unidecode (to parse non-roman characters for the StyleTTS2
|
869 |
+
# # for the VITS it should better skip the unknown letters - dont use unidecode())
|
870 |
+
# at generation fill the state of "last tts"
|
871 |
+
# at record fill the state of "last record" and place in list of voice/langs for TTS
|
872 |
+
VOICES = ['jv_ID_google-gmu_04982.wav',
|
873 |
+
'it_IT_mls_1595.wav',
|
874 |
+
'en_US_vctk_p303.wav',
|
875 |
+
'en_US_vctk_p306.wav',
|
876 |
+
'it_IT_mls_8842.wav',
|
877 |
+
'en_US_cmu_arctic_ksp.wav',
|
878 |
+
'jv_ID_google-gmu_05970.wav',
|
879 |
+
'en_US_vctk_p318.wav',
|
880 |
+
'ha_NE_openbible.wav',
|
881 |
+
'ne_NP_ne-google_0883.wav',
|
882 |
+
'en_US_vctk_p280.wav',
|
883 |
+
'bn_multi_1010.wav',
|
884 |
+
'en_US_vctk_p259.wav',
|
885 |
+
'it_IT_mls_844.wav',
|
886 |
+
'en_US_vctk_p269.wav',
|
887 |
+
'en_US_vctk_p285.wav',
|
888 |
+
'de_DE_m-ailabs_angela_merkel.wav',
|
889 |
+
'en_US_vctk_p316.wav',
|
890 |
+
'en_US_vctk_p362.wav',
|
891 |
+
'jv_ID_google-gmu_06207.wav',
|
892 |
+
'tn_ZA_google-nwu_9061.wav',
|
893 |
+
'fr_FR_tom.wav',
|
894 |
+
'en_US_vctk_p233.wav',
|
895 |
+
'it_IT_mls_4975.wav',
|
896 |
+
'en_US_vctk_p236.wav',
|
897 |
+
'bn_multi_01232.wav',
|
898 |
+
'bn_multi_5958.wav',
|
899 |
+
'it_IT_mls_9185.wav',
|
900 |
+
'en_US_vctk_p248.wav',
|
901 |
+
'en_US_vctk_p287.wav',
|
902 |
+
'it_IT_mls_9772.wav',
|
903 |
+
'te_IN_cmu-indic_sk.wav',
|
904 |
+
'tn_ZA_google-nwu_8333.wav',
|
905 |
+
'en_US_vctk_p260.wav',
|
906 |
+
'en_US_vctk_p247.wav',
|
907 |
+
'en_US_vctk_p329.wav',
|
908 |
+
'en_US_cmu_arctic_fem.wav',
|
909 |
+
'en_US_cmu_arctic_rms.wav',
|
910 |
+
'en_US_vctk_p308.wav',
|
911 |
+
'jv_ID_google-gmu_08736.wav',
|
912 |
+
'en_US_vctk_p245.wav',
|
913 |
+
'fr_FR_m-ailabs_nadine_eckert_boulet.wav',
|
914 |
+
'jv_ID_google-gmu_03314.wav',
|
915 |
+
'en_US_vctk_p239.wav',
|
916 |
+
'jv_ID_google-gmu_05540.wav',
|
917 |
+
'it_IT_mls_7440.wav',
|
918 |
+
'en_US_vctk_p310.wav',
|
919 |
+
'en_US_vctk_p237.wav',
|
920 |
+
'en_US_hifi-tts_92.wav',
|
921 |
+
'en_US_cmu_arctic_aew.wav',
|
922 |
+
'ne_NP_ne-google_2099.wav',
|
923 |
+
'en_US_vctk_p226.wav',
|
924 |
+
'af_ZA_google-nwu_1919.wav',
|
925 |
+
'jv_ID_google-gmu_03727.wav',
|
926 |
+
'en_US_vctk_p317.wav',
|
927 |
+
'tn_ZA_google-nwu_0378.wav',
|
928 |
+
'nl_pmk.wav',
|
929 |
+
'en_US_vctk_p286.wav',
|
930 |
+
'tn_ZA_google-nwu_3342.wav',
|
931 |
+
# 'en_US_vctk_p343.wav',
|
932 |
+
'de_DE_m-ailabs_ramona_deininger.wav',
|
933 |
+
'jv_ID_google-gmu_03424.wav',
|
934 |
+
'en_US_vctk_p341.wav',
|
935 |
+
'jv_ID_google-gmu_03187.wav',
|
936 |
+
'ne_NP_ne-google_3960.wav',
|
937 |
+
'jv_ID_google-gmu_06080.wav',
|
938 |
+
'ne_NP_ne-google_3997.wav',
|
939 |
+
# 'en_US_vctk_p267.wav',
|
940 |
+
'en_US_vctk_p240.wav',
|
941 |
+
'ne_NP_ne-google_5687.wav',
|
942 |
+
'ne_NP_ne-google_9407.wav',
|
943 |
+
'jv_ID_google-gmu_05667.wav',
|
944 |
+
'jv_ID_google-gmu_01519.wav',
|
945 |
+
'ne_NP_ne-google_7957.wav',
|
946 |
+
'it_IT_mls_4705.wav',
|
947 |
+
'ne_NP_ne-google_6329.wav',
|
948 |
+
'it_IT_mls_1725.wav',
|
949 |
+
'tn_ZA_google-nwu_8914.wav',
|
950 |
+
'en_US_ljspeech.wav',
|
951 |
+
'tn_ZA_google-nwu_4850.wav',
|
952 |
+
'en_US_vctk_p238.wav',
|
953 |
+
'en_US_vctk_p302.wav',
|
954 |
+
'jv_ID_google-gmu_08178.wav',
|
955 |
+
'en_US_vctk_p313.wav',
|
956 |
+
'af_ZA_google-nwu_2418.wav',
|
957 |
+
'bn_multi_00737.wav',
|
958 |
+
'en_US_vctk_p275.wav', # y
|
959 |
+
'af_ZA_google-nwu_0184.wav',
|
960 |
+
'jv_ID_google-gmu_07638.wav',
|
961 |
+
'ne_NP_ne-google_6587.wav',
|
962 |
+
'ne_NP_ne-google_0258.wav',
|
963 |
+
'en_US_vctk_p232.wav',
|
964 |
+
'en_US_vctk_p336.wav',
|
965 |
+
'jv_ID_google-gmu_09039.wav',
|
966 |
+
'en_US_vctk_p312.wav',
|
967 |
+
'af_ZA_google-nwu_8148.wav',
|
968 |
+
'en_US_vctk_p326.wav',
|
969 |
+
'en_US_vctk_p264.wav',
|
970 |
+
'en_US_vctk_p295.wav',
|
971 |
+
# 'en_US_vctk_p298.wav',
|
972 |
+
'es_ES_m-ailabs_victor_villarraza.wav',
|
973 |
+
'pl_PL_m-ailabs_nina_brown.wav',
|
974 |
+
'tn_ZA_google-nwu_9365.wav',
|
975 |
+
'en_US_vctk_p294.wav',
|
976 |
+
'jv_ID_google-gmu_00658.wav',
|
977 |
+
'jv_ID_google-gmu_08305.wav',
|
978 |
+
'en_US_vctk_p330.wav',
|
979 |
+
'gu_IN_cmu-indic_cmu_indic_guj_dp.wav',
|
980 |
+
'jv_ID_google-gmu_05219.wav',
|
981 |
+
'en_US_vctk_p284.wav',
|
982 |
+
'de_DE_m-ailabs_eva_k.wav',
|
983 |
+
# 'bn_multi_00779.wav',
|
984 |
+
'en_UK_apope.wav',
|
985 |
+
'en_US_vctk_p345.wav',
|
986 |
+
'it_IT_mls_6744.wav',
|
987 |
+
'en_US_vctk_p347.wav',
|
988 |
+
'en_US_m-ailabs_mary_ann.wav',
|
989 |
+
'en_US_m-ailabs_elliot_miller.wav',
|
990 |
+
'en_US_vctk_p279.wav',
|
991 |
+
'ru_RU_multi_nikolaev.wav',
|
992 |
+
'bn_multi_4811.wav',
|
993 |
+
'tn_ZA_google-nwu_7693.wav',
|
994 |
+
'bn_multi_01701.wav',
|
995 |
+
'en_US_vctk_p262.wav',
|
996 |
+
# 'en_US_vctk_p266.wav',
|
997 |
+
'en_US_vctk_p243.wav',
|
998 |
+
'en_US_vctk_p297.wav',
|
999 |
+
'en_US_vctk_p278.wav',
|
1000 |
+
'jv_ID_google-gmu_02059.wav',
|
1001 |
+
'en_US_vctk_p231.wav',
|
1002 |
+
'te_IN_cmu-indic_kpn.wav',
|
1003 |
+
'en_US_vctk_p250.wav',
|
1004 |
+
'it_IT_mls_4974.wav',
|
1005 |
+
'en_US_cmu_arctic_awbrms.wav',
|
1006 |
+
# 'en_US_vctk_p263.wav',
|
1007 |
+
'nl_femal.wav',
|
1008 |
+
'tn_ZA_google-nwu_6116.wav',
|
1009 |
+
'jv_ID_google-gmu_06383.wav',
|
1010 |
+
'en_US_vctk_p225.wav',
|
1011 |
+
'en_US_vctk_p228.wav',
|
1012 |
+
'it_IT_mls_277.wav',
|
1013 |
+
'tn_ZA_google-nwu_7866.wav',
|
1014 |
+
'en_US_vctk_p300.wav',
|
1015 |
+
'ne_NP_ne-google_0649.wav',
|
1016 |
+
'es_ES_carlfm.wav',
|
1017 |
+
'jv_ID_google-gmu_06510.wav',
|
1018 |
+
'de_DE_m-ailabs_rebecca_braunert_plunkett.wav',
|
1019 |
+
'en_US_vctk_p340.wav',
|
1020 |
+
'en_US_cmu_arctic_gka.wav',
|
1021 |
+
'ne_NP_ne-google_2027.wav',
|
1022 |
+
'jv_ID_google-gmu_09724.wav',
|
1023 |
+
'en_US_vctk_p361.wav',
|
1024 |
+
'ne_NP_ne-google_6834.wav',
|
1025 |
+
'jv_ID_google-gmu_02326.wav',
|
1026 |
+
'fr_FR_m-ailabs_zeckou.wav',
|
1027 |
+
'tn_ZA_google-nwu_1932.wav',
|
1028 |
+
# 'female-20-happy.wav',
|
1029 |
+
'tn_ZA_google-nwu_1483.wav',
|
1030 |
+
'de_DE_thorsten-emotion_amused.wav',
|
1031 |
+
'ru_RU_multi_minaev.wav',
|
1032 |
+
'sw_lanfrica.wav',
|
1033 |
+
'en_US_vctk_p271.wav',
|
1034 |
+
'tn_ZA_google-nwu_0441.wav',
|
1035 |
+
'it_IT_mls_6001.wav',
|
1036 |
+
'en_US_vctk_p305.wav',
|
1037 |
+
'it_IT_mls_8828.wav',
|
1038 |
+
'jv_ID_google-gmu_08002.wav',
|
1039 |
+
'it_IT_mls_2033.wav',
|
1040 |
+
'tn_ZA_google-nwu_3629.wav',
|
1041 |
+
'it_IT_mls_6348.wav',
|
1042 |
+
'en_US_cmu_arctic_axb.wav',
|
1043 |
+
'it_IT_mls_8181.wav',
|
1044 |
+
'en_US_vctk_p230.wav',
|
1045 |
+
'af_ZA_google-nwu_7214.wav',
|
1046 |
+
'nl_nathalie.wav',
|
1047 |
+
'it_IT_mls_8207.wav',
|
1048 |
+
'ko_KO_kss.wav',
|
1049 |
+
'af_ZA_google-nwu_6590.wav',
|
1050 |
+
'jv_ID_google-gmu_00264.wav',
|
1051 |
+
'tn_ZA_google-nwu_6234.wav',
|
1052 |
+
'jv_ID_google-gmu_05522.wav',
|
1053 |
+
'en_US_cmu_arctic_lnh.wav',
|
1054 |
+
'en_US_vctk_p272.wav',
|
1055 |
+
'en_US_cmu_arctic_slp.wav',
|
1056 |
+
'en_US_vctk_p299.wav',
|
1057 |
+
'en_US_hifi-tts_9017.wav',
|
1058 |
+
'it_IT_mls_4998.wav',
|
1059 |
+
'it_IT_mls_6299.wav',
|
1060 |
+
'en_US_cmu_arctic_rxr.wav',
|
1061 |
+
'female-46-neutral.wav',
|
1062 |
+
'jv_ID_google-gmu_01392.wav',
|
1063 |
+
'tn_ZA_google-nwu_8512.wav',
|
1064 |
+
'en_US_vctk_p244.wav',
|
1065 |
+
# 'bn_multi_3108.wav',
|
1066 |
+
# 'it_IT_mls_7405.wav',
|
1067 |
+
# 'bn_multi_3713.wav',
|
1068 |
+
# 'yo_openbible.wav',
|
1069 |
+
# 'jv_ID_google-gmu_01932.wav',
|
1070 |
+
'en_US_vctk_p270.wav',
|
1071 |
+
'tn_ZA_google-nwu_6459.wav',
|
1072 |
+
'bn_multi_4046.wav',
|
1073 |
+
'en_US_vctk_p288.wav',
|
1074 |
+
'en_US_vctk_p251.wav',
|
1075 |
+
'es_ES_m-ailabs_tux.wav',
|
1076 |
+
'tn_ZA_google-nwu_6206.wav',
|
1077 |
+
'bn_multi_9169.wav',
|
1078 |
+
# 'en_US_vctk_p293.wav',
|
1079 |
+
# 'en_US_vctk_p255.wav',
|
1080 |
+
'af_ZA_google-nwu_8963.wav',
|
1081 |
+
# 'en_US_vctk_p265.wav',
|
1082 |
+
'gu_IN_cmu-indic_cmu_indic_guj_ad.wav',
|
1083 |
+
'jv_ID_google-gmu_07335.wav',
|
1084 |
+
'en_US_vctk_p323.wav',
|
1085 |
+
'en_US_vctk_p281.wav',
|
1086 |
+
'en_US_cmu_arctic_bdl.wav',
|
1087 |
+
'en_US_m-ailabs_judy_bieber.wav',
|
1088 |
+
'it_IT_mls_10446.wav',
|
1089 |
+
'en_US_vctk_p261.wav',
|
1090 |
+
'en_US_vctk_p292.wav',
|
1091 |
+
'te_IN_cmu-indic_ss.wav',
|
1092 |
+
'en_US_vctk_p311.wav',
|
1093 |
+
'it_IT_mls_12428.wav',
|
1094 |
+
'en_US_cmu_arctic_aup.wav',
|
1095 |
+
'jv_ID_google-gmu_04679.wav',
|
1096 |
+
'it_IT_mls_4971.wav',
|
1097 |
+
'en_US_cmu_arctic_ljm.wav',
|
1098 |
+
'fa_haaniye.wav',
|
1099 |
+
'en_US_vctk_p339.wav',
|
1100 |
+
'tn_ZA_google-nwu_7896.wav',
|
1101 |
+
'en_US_vctk_p253.wav',
|
1102 |
+
'it_IT_mls_5421.wav',
|
1103 |
+
# 'ne_NP_ne-google_0546.wav',
|
1104 |
+
'vi_VN_vais1000.wav',
|
1105 |
+
'en_US_vctk_p229.wav',
|
1106 |
+
'en_US_vctk_p254.wav',
|
1107 |
+
'en_US_vctk_p258.wav',
|
1108 |
+
'it_IT_mls_7936.wav',
|
1109 |
+
'en_US_vctk_p301.wav',
|
1110 |
+
'tn_ZA_google-nwu_0045.wav',
|
1111 |
+
'it_IT_mls_659.wav',
|
1112 |
+
'tn_ZA_google-nwu_7674.wav',
|
1113 |
+
'it_IT_mls_12804.wav',
|
1114 |
+
'el_GR_rapunzelina.wav',
|
1115 |
+
'en_US_hifi-tts_6097.wav',
|
1116 |
+
'en_US_vctk_p257.wav',
|
1117 |
+
'jv_ID_google-gmu_07875.wav',
|
1118 |
+
'it_IT_mls_1157.wav',
|
1119 |
+
'it_IT_mls_643.wav',
|
1120 |
+
'en_US_vctk_p304.wav',
|
1121 |
+
'ru_RU_multi_hajdurova.wav',
|
1122 |
+
'it_IT_mls_8461.wav',
|
1123 |
+
'bn_multi_3958.wav',
|
1124 |
+
'it_IT_mls_1989.wav',
|
1125 |
+
'en_US_vctk_p249.wav',
|
1126 |
+
# 'bn_multi_0834.wav',
|
1127 |
+
'en_US_vctk_p307.wav',
|
1128 |
+
'es_ES_m-ailabs_karen_savage.wav',
|
1129 |
+
'fr_FR_m-ailabs_bernard.wav',
|
1130 |
+
'en_US_vctk_p252.wav',
|
1131 |
+
'en_US_cmu_arctic_jmk.wav',
|
1132 |
+
'en_US_vctk_p333.wav',
|
1133 |
+
'tn_ZA_google-nwu_4506.wav',
|
1134 |
+
'ne_NP_ne-google_0283.wav',
|
1135 |
+
'de_DE_m-ailabs_karlsson.wav',
|
1136 |
+
'en_US_cmu_arctic_awb.wav',
|
1137 |
+
'en_US_vctk_p246.wav',
|
1138 |
+
'en_US_cmu_arctic_clb.wav',
|
1139 |
+
'en_US_vctk_p364.wav',
|
1140 |
+
'nl_flemishguy.wav',
|
1141 |
+
'en_US_vctk_p276.wav', # y
|
1142 |
+
# 'en_US_vctk_p274.wav',
|
1143 |
+
'fr_FR_m-ailabs_gilles_g_le_blanc.wav',
|
1144 |
+
'it_IT_mls_7444.wav',
|
1145 |
+
'style_o22050.wav',
|
1146 |
+
'en_US_vctk_s5.wav',
|
1147 |
+
'en_US_vctk_p268.wav',
|
1148 |
+
'it_IT_mls_6807.wav',
|
1149 |
+
'it_IT_mls_2019.wav',
|
1150 |
+
'male-60-angry.wav',
|
1151 |
+
'af_ZA_google-nwu_8924.wav',
|
1152 |
+
'en_US_vctk_p374.wav',
|
1153 |
+
'en_US_vctk_p363.wav',
|
1154 |
+
'it_IT_mls_644.wav',
|
1155 |
+
'ne_NP_ne-google_3614.wav',
|
1156 |
+
'en_US_vctk_p241.wav',
|
1157 |
+
'ne_NP_ne-google_3154.wav',
|
1158 |
+
'en_US_vctk_p234.wav',
|
1159 |
+
'it_IT_mls_8384.wav',
|
1160 |
+
'fr_FR_m-ailabs_ezwa.wav',
|
1161 |
+
'it_IT_mls_5010.wav',
|
1162 |
+
'en_US_vctk_p351.wav',
|
1163 |
+
'en_US_cmu_arctic_eey.wav',
|
1164 |
+
'jv_ID_google-gmu_04285.wav',
|
1165 |
+
'jv_ID_google-gmu_06941.wav',
|
1166 |
+
'hu_HU_diana-majlinger.wav',
|
1167 |
+
'tn_ZA_google-nwu_2839.wav',
|
1168 |
+
'bn_multi_03042.wav',
|
1169 |
+
'tn_ZA_google-nwu_5628.wav',
|
1170 |
+
'it_IT_mls_4649.wav',
|
1171 |
+
'af_ZA_google-nwu_7130.wav',
|
1172 |
+
'en_US_cmu_arctic_slt.wav',
|
1173 |
+
'jv_ID_google-gmu_04175.wav',
|
1174 |
+
'gu_IN_cmu-indic_cmu_indic_guj_kt.wav',
|
1175 |
+
'jv_ID_google-gmu_00027.wav',
|
1176 |
+
'jv_ID_google-gmu_02884.wav',
|
1177 |
+
'en_US_vctk_p360.wav',
|
1178 |
+
'en_US_vctk_p334.wav',
|
1179 |
+
'male-27-sad.wav',
|
1180 |
+
'tn_ZA_google-nwu_1498.wav',
|
1181 |
+
'fi_FI_harri-tapani-ylilammi.wav',
|
1182 |
+
'bn_multi_rm.wav',
|
1183 |
+
'ne_NP_ne-google_2139.wav',
|
1184 |
+
'pl_PL_m-ailabs_piotr_nater.wav',
|
1185 |
+
'fr_FR_siwis.wav',
|
1186 |
+
'nl_bart-de-leeuw.wav',
|
1187 |
+
'jv_ID_google-gmu_04715.wav',
|
1188 |
+
'en_US_vctk_p283.wav',
|
1189 |
+
'en_US_vctk_p314.wav',
|
1190 |
+
'en_US_vctk_p335.wav',
|
1191 |
+
'jv_ID_google-gmu_07765.wav',
|
1192 |
+
'en_US_vctk_p273.wav'
|
1193 |
+
]
|
1194 |
+
|
1195 |
_tts = StyleTTS2().to('cpu')
|
1196 |
|
1197 |
def only_greek_or_only_latin(text, lang='grc'):
|
|
|
1321 |
|
1322 |
|
1323 |
def other_tts(text='Hallov worlds Far over the',
|
1324 |
+
ref_s='wav/af_ZA_google-nwu_0184.wav',
|
1325 |
+
soundscape='birds fomig',
|
1326 |
+
cache_lim=64):
|
1327 |
+
|
1328 |
+
total_audio = []
|
1329 |
+
|
1330 |
+
final_audio = None
|
1331 |
+
speech_audio = None
|
1332 |
|
|
|
1333 |
|
1334 |
+
if text and text.strip():
|
1335 |
+
|
1336 |
+
text = only_greek_or_only_latin(text, lang='eng')
|
1337 |
|
1338 |
+
speech_audio = _tts.inference(text, ref_s=ref_s)[0, 0, :].numpy() # 24 Khz
|
1339 |
+
|
1340 |
+
if speech_audio.shape[0] > 10:
|
1341 |
|
1342 |
+
speech_audio = audresample.resample(signal=speech_audio.astype(np.float32),
|
1343 |
+
original_rate=24000,
|
1344 |
+
target_rate=16000)[0, :] # 16 KHz
|
1345 |
|
1346 |
+
# AudioGen
|
1347 |
+
if soundscape and soundscape.strip():
|
1348 |
|
1349 |
+
|
1350 |
+
speech_duration_secs = len(speech_audio) / 16000 if speech_audio is not None else 0
|
1351 |
+
target_duration = max(speech_duration_secs + 0.74, 2.0)
|
1352 |
|
|
|
1353 |
|
1354 |
+
background_audio = audiogen.generate(
|
1355 |
+
soundscape,
|
1356 |
+
duration=target_duration,
|
1357 |
+
cache_lim=max(4, int(cache_lim)) # at least allow 10 A/R stEps
|
1358 |
+
).numpy()
|
1359 |
+
|
1360 |
+
if speech_audio is not None:
|
1361 |
+
|
1362 |
+
len_speech = len(speech_audio)
|
1363 |
+
len_background = len(background_audio)
|
1364 |
+
|
1365 |
+
if len_background > len_speech:
|
1366 |
+
padding = np.zeros(len_background - len_speech,
|
1367 |
+
dtype=np.float32)
|
1368 |
+
speech_audio = np.concatenate([speech_audio, padding])
|
1369 |
+
elif len_speech > len_background:
|
1370 |
+
padding = np.zeros(len_speech - len_background,
|
1371 |
+
dtype=np.float32)
|
1372 |
+
background_audio = np.concatenate([background_audio, padding])
|
1373 |
+
|
1374 |
+
# Convert to 2D arrays for stereo blending
|
1375 |
+
speech_audio_stereo = speech_audio[None, :]
|
1376 |
+
background_audio_stereo = background_audio[None, :]
|
1377 |
+
|
1378 |
+
|
1379 |
+
final_audio = np.concatenate([
|
1380 |
+
0.49 * speech_audio_stereo + 0.51 * background_audio_stereo,
|
1381 |
+
0.51 * background_audio_stereo + 0.49 * speech_audio_stereo
|
1382 |
+
],0)
|
1383 |
+
else:
|
1384 |
+
final_audio = background_audio
|
1385 |
+
|
1386 |
+
elif speech_audio is not None:
|
1387 |
+
final_audio = speech_audio
|
1388 |
+
|
1389 |
+
# If both inputs are empty, create a 2s silent audio file.
|
1390 |
+
if final_audio is None:
|
1391 |
+
final_audio = np.zeros(16000 * 2, dtype=np.float32)
|
1392 |
+
print('\n=============F I N A L\n', final_audio.shape, final_audio.dtype, final_audio.min(), np.isnan(final_audio).sum())
|
1393 |
+
wavfile = '_audionar_.wav'
|
1394 |
+
audiofile.write(wavfile, final_audio, 16000)
|
1395 |
+
return wavfile
|
1396 |
|
1397 |
def update_selected_voice(voice_filename):
|
1398 |
return 'wav/' + voice_filename + '.wav'
|
|
|
1443 |
# Main input and output components
|
1444 |
with gr.Row():
|
1445 |
text_input = gr.Textbox(
|
1446 |
+
label="TYpe text for TTS:",
|
1447 |
placeholder="Type your message here...",
|
1448 |
lines=4,
|
1449 |
value="Farover the misty mountains cold too dungeons deep and caverns old.",
|
1450 |
)
|
1451 |
+
soundscape_input = gr.Textbox(lines=1,
|
1452 |
+
value="frogs",
|
1453 |
+
label="AudioGen Txt"
|
1454 |
+
),
|
1455 |
+
kv_input = gr.Number(
|
1456 |
+
label="kv Period",
|
1457 |
+
value=24,
|
1458 |
+
)
|
1459 |
generate_button = gr.Button("Generate Audio", variant="primary")
|
1460 |
|
1461 |
output_audio = gr.Audio(label="TTS Output")
|
|
|
1482 |
|
1483 |
generate_button.click(
|
1484 |
fn=other_tts,
|
1485 |
+
inputs=[text_input, selected_voice, soundscape_input, kv_input],
|
1486 |
outputs=output_audio
|
1487 |
)
|
1488 |
|
|
|
1524 |
value='Η γρηγορη καφετι αλεπου πειδαει πανω απο τον τεμπελη σκυλο.',
|
1525 |
label="Type text for TTS"
|
1526 |
)
|
1527 |
+
lang_dropdown = gr.Dropdown(choices=language_names, label="TTS language", value="Ancient greek")
|
1528 |
+
soundscape_input = gr.Textbox(lines=1, value="dogs barg", label="AudioGen Txt")
|
1529 |
+
kv_input = gr.Number(label="kv Period", value=70)
|
|
|
|
|
1530 |
|
1531 |
# Create a button to trigger the TTS function
|
1532 |
tts_button = gr.Button("Generate Audio")
|
|
|
1537 |
# Link the button click event to the mms_tts function
|
1538 |
tts_button.click(
|
1539 |
fn=audionar_tts,
|
1540 |
+
inputs=[text_input, lang_dropdown, soundscape_input, kv_input],
|
1541 |
outputs=audio_output
|
1542 |
)
|
1543 |
|
audiocraft.py
ADDED
@@ -0,0 +1,724 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch import nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
from omegaconf import OmegaConf
|
5 |
+
import numpy as np
|
6 |
+
from huggingface_hub import hf_hub_download
|
7 |
+
import os
|
8 |
+
from torch.nn.utils import weight_norm
|
9 |
+
from transformers import T5EncoderModel, T5Tokenizer # type: ignore
|
10 |
+
from einops import rearrange
|
11 |
+
|
12 |
+
torch.backends.cuda.enable_mem_efficient_sdp(True)
|
13 |
+
|
14 |
+
|
15 |
+
|
16 |
+
N_REPEAT = 2 # num (virtual batch_size) clones of audio sounds
|
17 |
+
|
18 |
+
def _shift(x):
|
19 |
+
#print(x.shape, 'BATCH Independent SHIFT\n AudioGen')
|
20 |
+
for i, _slice in enumerate(x):
|
21 |
+
n = x.shape[2]
|
22 |
+
offset = np.random.randint(.24 * n, max(1, .74 * n)) # high should be above >= 0 TBD
|
23 |
+
print(offset)
|
24 |
+
x[i, :, :] = torch.roll(_slice, offset, dims=1) # _slice 2D
|
25 |
+
return x
|
26 |
+
|
27 |
+
class AudioGen(torch.nn.Module):
|
28 |
+
|
29 |
+
# https://huggingface.co/facebook/audiogen-medium
|
30 |
+
|
31 |
+
def __init__(self):
|
32 |
+
|
33 |
+
super().__init__()
|
34 |
+
_file_1 = hf_hub_download(
|
35 |
+
repo_id='facebook/audiogen-medium',
|
36 |
+
filename="compression_state_dict.bin",
|
37 |
+
cache_dir=os.environ.get('AUDIOCRAFT_CACHE_DIR', None),
|
38 |
+
library_name="audiocraft",
|
39 |
+
library_version= '1.3.0a1') # Found at __init__.py #audiocraft.__version__)
|
40 |
+
pkg = torch.load(_file_1, map_location='cpu')# kwargs = OmegaConf.create(pkg['xp.cfg'])
|
41 |
+
self.compression_model = EncodecModel()
|
42 |
+
self.compression_model.load_state_dict(pkg['best_state'], strict=False)
|
43 |
+
self.compression_model.eval() # ckpt has also unused encoder weights
|
44 |
+
self._chunk_len = 476
|
45 |
+
_file_2 = hf_hub_download(
|
46 |
+
repo_id='facebook/audiogen-medium',
|
47 |
+
filename="state_dict.bin",
|
48 |
+
cache_dir=os.environ.get('AUDIOCRAFT_CACHE_DIR', None),
|
49 |
+
library_name="audiocraft",
|
50 |
+
library_version= '1.3.0a1') # Found at __init__.py #audiocraft.__version__)
|
51 |
+
pkg = torch.load(_file_2, map_location='cpu')
|
52 |
+
cfg = OmegaConf.create(pkg['xp.cfg']) # CFG inside torch bin
|
53 |
+
_best = pkg['best_state']
|
54 |
+
_best['t5.output_proj.weight'] = _best.pop('condition_provider.conditioners.description.output_proj.weight')#.to(torch.float)
|
55 |
+
_best['t5.output_proj.bias'] = _best.pop('condition_provider.conditioners.description.output_proj.bias')#.to(torch.float)
|
56 |
+
self.lm = LMModel()
|
57 |
+
self.lm.load_state_dict(pkg['best_state'], strict=True)
|
58 |
+
self.lm.eval()
|
59 |
+
|
60 |
+
|
61 |
+
@torch.no_grad()
|
62 |
+
def generate(self,
|
63 |
+
prompt='dogs mewo',
|
64 |
+
duration=2.24, # seconds of audio
|
65 |
+
cache_lim=71, # flush kv cache after cache_lim tok
|
66 |
+
):
|
67 |
+
torch.manual_seed(42) # https://github.com/facebookresearch/audiocraft/issues/111#issuecomment-1614732858
|
68 |
+
self.lm.cache_lim = cache_lim
|
69 |
+
self.lm.n_draw = int(.8 * duration) + 1 # different beam every 0.47 seconds of audio
|
70 |
+
with torch.autocast(device_type='cpu', dtype=torch.bfloat16):
|
71 |
+
gen_tokens = self.lm.generate(
|
72 |
+
text_condition=[prompt] * N_REPEAT + [''] * N_REPEAT,#['dogs', 'dogs...!', '', '']
|
73 |
+
max_tokens=int(.04 * duration / N_REPEAT * self.compression_model.frame_rate) + 12) # [bs, 4, 74*self.lm.n_draw]
|
74 |
+
|
75 |
+
# OOM if vocode all tokens
|
76 |
+
x = []
|
77 |
+
|
78 |
+
|
79 |
+
for i in range(7, gen_tokens.shape[2], self._chunk_len): # min soundscape 2s assures 10 tokens
|
80 |
+
|
81 |
+
decoded_chunk = self.compression_model.decode(gen_tokens[:, :, i-7:i+self._chunk_len])
|
82 |
+
|
83 |
+
x.append(decoded_chunk)
|
84 |
+
|
85 |
+
x = torch.cat(x, 2) # [bs, 1, 114000]
|
86 |
+
|
87 |
+
x = _shift(x) # clone() to have xN
|
88 |
+
|
89 |
+
return x.reshape(-1) #x / (x.abs().max() + 1e-7)
|
90 |
+
|
91 |
+
|
92 |
+
class EncodecModel(nn.Module):
|
93 |
+
|
94 |
+
def __init__(self):
|
95 |
+
|
96 |
+
super().__init__()
|
97 |
+
self.decoder = SEANetDecoder()
|
98 |
+
self.quantizer = ResidualVectorQuantizer()
|
99 |
+
self.frame_rate = 50
|
100 |
+
|
101 |
+
|
102 |
+
def decode(self, codes):
|
103 |
+
# B,K,T -> B,C,T
|
104 |
+
emb = self.quantizer.decode(codes)
|
105 |
+
return self.decoder(emb)
|
106 |
+
|
107 |
+
|
108 |
+
class StreamableLSTM(nn.Module):
|
109 |
+
|
110 |
+
def __init__(self,
|
111 |
+
dimension,
|
112 |
+
num_layers=2,
|
113 |
+
skip=True):
|
114 |
+
|
115 |
+
super().__init__()
|
116 |
+
self.skip = skip
|
117 |
+
self.lstm = nn.LSTM(dimension, dimension, num_layers)
|
118 |
+
|
119 |
+
def forward(self, x):
|
120 |
+
x = x.permute(2, 0, 1)
|
121 |
+
y, _ = self.lstm(x)
|
122 |
+
if self.skip:
|
123 |
+
y = y + x
|
124 |
+
y = y.permute(1, 2, 0)
|
125 |
+
return y
|
126 |
+
|
127 |
+
|
128 |
+
|
129 |
+
class SEANetResnetBlock(nn.Module):
|
130 |
+
|
131 |
+
def __init__(self,
|
132 |
+
dim,
|
133 |
+
kernel_sizes = [3, 1],
|
134 |
+
pad_mode = 'reflect',
|
135 |
+
compress = 2):
|
136 |
+
|
137 |
+
super().__init__()
|
138 |
+
|
139 |
+
hidden = dim // compress
|
140 |
+
block = []
|
141 |
+
for i, kernel_size in enumerate(kernel_sizes):
|
142 |
+
in_chs = dim if i == 0 else hidden
|
143 |
+
out_chs = dim if i == len(kernel_sizes) - 1 else hidden
|
144 |
+
block += [nn.ELU(),
|
145 |
+
StreamableConv1d(in_chs,
|
146 |
+
out_chs,
|
147 |
+
kernel_size=kernel_size,
|
148 |
+
pad_mode=pad_mode)]
|
149 |
+
self.block = nn.Sequential(*block)
|
150 |
+
|
151 |
+
def forward(self, x):
|
152 |
+
return x + self.block(x)
|
153 |
+
|
154 |
+
|
155 |
+
|
156 |
+
|
157 |
+
|
158 |
+
class SEANetDecoder(nn.Module):
|
159 |
+
# channels=1 dimension=128 n_filters=64 n_residual_layers=1 ratios=[8, 5, 4, 2]
|
160 |
+
# activation='ELU' activation_params={'alpha': 1.0}, final_activation=None
|
161 |
+
# final_activation_params=None norm='weight_norm'
|
162 |
+
# norm_params={} kernel_size=7 last_kernel_size=7 residual_kernel_size=3 dilation_base=2
|
163 |
+
# causal=False pad_mode='constant'
|
164 |
+
# true_skip=True compress=2 lstm=2 disable_norm_outer_blocks=0 trim_right_ratio=1.0
|
165 |
+
|
166 |
+
def __init__(self,
|
167 |
+
channels = 1,
|
168 |
+
dimension = 128,
|
169 |
+
n_filters = 64,
|
170 |
+
n_residual_layers = 1,
|
171 |
+
ratios = [8, 5, 4, 2],
|
172 |
+
kernel_size = 7,
|
173 |
+
last_kernel_size = 7,
|
174 |
+
residual_kernel_size = 3,
|
175 |
+
pad_mode = 'constant',
|
176 |
+
compress = 2,
|
177 |
+
lstm = 2):
|
178 |
+
|
179 |
+
super().__init__()
|
180 |
+
|
181 |
+
|
182 |
+
mult = int(2 ** len(ratios))
|
183 |
+
model = [
|
184 |
+
StreamableConv1d(dimension, mult * n_filters,
|
185 |
+
kernel_size,
|
186 |
+
pad_mode=pad_mode)
|
187 |
+
]
|
188 |
+
|
189 |
+
if lstm:
|
190 |
+
print('\n\n\n\nLSTM IN SEANET\n\n\n\n')
|
191 |
+
model += [StreamableLSTM(mult * n_filters,
|
192 |
+
num_layers=lstm)]
|
193 |
+
|
194 |
+
# Upsample to raw audio scale
|
195 |
+
for i, ratio in enumerate(ratios):
|
196 |
+
|
197 |
+
|
198 |
+
model += [
|
199 |
+
nn.ELU(),
|
200 |
+
StreamableConvTranspose1d(mult * n_filters,
|
201 |
+
mult * n_filters // 2,
|
202 |
+
kernel_size=ratio * 2,
|
203 |
+
stride=ratio),
|
204 |
+
]
|
205 |
+
# Add residual layers
|
206 |
+
for j in range(n_residual_layers):
|
207 |
+
|
208 |
+
model += [
|
209 |
+
SEANetResnetBlock(mult * n_filters // 2,
|
210 |
+
kernel_sizes=[residual_kernel_size, 1],
|
211 |
+
pad_mode=pad_mode,
|
212 |
+
compress=compress)]
|
213 |
+
|
214 |
+
mult //= 2
|
215 |
+
|
216 |
+
# Add final layers
|
217 |
+
model += [
|
218 |
+
nn.ELU(),
|
219 |
+
StreamableConv1d(n_filters,
|
220 |
+
channels,
|
221 |
+
last_kernel_size,
|
222 |
+
pad_mode=pad_mode)]
|
223 |
+
self.model=nn.Sequential(*model)
|
224 |
+
|
225 |
+
def forward(self, z):
|
226 |
+
return self.model(z)
|
227 |
+
|
228 |
+
|
229 |
+
|
230 |
+
|
231 |
+
def unpad1d(x, paddings):
|
232 |
+
padding_left, padding_right = paddings
|
233 |
+
end = x.shape[-1] - padding_right
|
234 |
+
return x[..., padding_left: end]
|
235 |
+
|
236 |
+
|
237 |
+
class NormConv1d(nn.Module):
|
238 |
+
|
239 |
+
def __init__(self, *args, **kwargs):
|
240 |
+
super().__init__()
|
241 |
+
|
242 |
+
self.conv = weight_norm(nn.Conv1d(*args, **kwargs)) # norm = weight_norm
|
243 |
+
|
244 |
+
def forward(self, x):
|
245 |
+
return self.conv(x)
|
246 |
+
|
247 |
+
|
248 |
+
|
249 |
+
|
250 |
+
|
251 |
+
class NormConvTranspose1d(nn.Module):
|
252 |
+
|
253 |
+
def __init__(self, *args, causal: bool = False, norm: str = 'none',
|
254 |
+
norm_kwargs = {}, **kwargs):
|
255 |
+
super().__init__()
|
256 |
+
|
257 |
+
self.convtr = weight_norm(nn.ConvTranspose1d(*args, **kwargs))
|
258 |
+
|
259 |
+
def forward(self, x):
|
260 |
+
return self.convtr(x)
|
261 |
+
|
262 |
+
|
263 |
+
|
264 |
+
|
265 |
+
|
266 |
+
|
267 |
+
class StreamableConv1d(nn.Module):
|
268 |
+
|
269 |
+
def __init__(self,
|
270 |
+
in_channels,
|
271 |
+
out_channels,
|
272 |
+
kernel_size,
|
273 |
+
stride=1,
|
274 |
+
groups=1,
|
275 |
+
bias=True,
|
276 |
+
pad_mode='reflect'):
|
277 |
+
super().__init__()
|
278 |
+
if (stride != 1) or (groups != 1):
|
279 |
+
raise ValueError
|
280 |
+
self.conv = NormConv1d(in_channels,
|
281 |
+
out_channels,
|
282 |
+
kernel_size,
|
283 |
+
stride,
|
284 |
+
groups=groups,
|
285 |
+
bias=bias)
|
286 |
+
self.pad_mode = pad_mode
|
287 |
+
|
288 |
+
def forward(self, x):
|
289 |
+
kernel_size = self.conv.conv.kernel_size[0]
|
290 |
+
kernel_size = (kernel_size - 1) * self.conv.conv.dilation[0] + 1
|
291 |
+
padding_total = kernel_size - self.conv.conv.stride[0]
|
292 |
+
padding_right = padding_total // 2
|
293 |
+
padding_left = padding_total - padding_right
|
294 |
+
|
295 |
+
# x = pad1d(x, (padding_left, padding_right), mode=self.pad_mode)
|
296 |
+
x = F.pad(x, (padding_left, padding_right), self.pad_mode)
|
297 |
+
return self.conv(x)
|
298 |
+
|
299 |
+
|
300 |
+
class StreamableConvTranspose1d(nn.Module):
|
301 |
+
|
302 |
+
def __init__(self, in_channels: int, out_channels: int,
|
303 |
+
kernel_size: int, stride: int = 1, causal: bool = False,
|
304 |
+
norm: str = 'none', trim_right_ratio: float = 1.,
|
305 |
+
norm_kwargs = {}):
|
306 |
+
super().__init__()
|
307 |
+
self.convtr = NormConvTranspose1d(in_channels,
|
308 |
+
out_channels,
|
309 |
+
kernel_size,
|
310 |
+
stride)
|
311 |
+
|
312 |
+
|
313 |
+
def forward(self, x):
|
314 |
+
|
315 |
+
padding_total = self.convtr.convtr.kernel_size[0] - self.convtr.convtr.stride[0]
|
316 |
+
|
317 |
+
y = self.convtr(x)
|
318 |
+
|
319 |
+
# Asymmetric padding required for odd strides
|
320 |
+
# print('\n \n\n\nn\n\n\nnANTICAUSAL T\n\n\n')
|
321 |
+
padding_right = padding_total // 2
|
322 |
+
padding_left = padding_total - padding_right
|
323 |
+
|
324 |
+
y = unpad1d(y, (padding_left, padding_right))
|
325 |
+
return y
|
326 |
+
|
327 |
+
|
328 |
+
# VQ
|
329 |
+
|
330 |
+
class EuclideanCodebook(nn.Module):
|
331 |
+
def __init__(self,
|
332 |
+
dim,
|
333 |
+
codebook_size):
|
334 |
+
super().__init__()
|
335 |
+
self.register_buffer("embed", torch.zeros(codebook_size, dim))
|
336 |
+
|
337 |
+
|
338 |
+
|
339 |
+
|
340 |
+
class VectorQuantization(nn.Module):
|
341 |
+
|
342 |
+
def __init__(self,
|
343 |
+
dim,
|
344 |
+
codebook_size):
|
345 |
+
|
346 |
+
super().__init__()
|
347 |
+
self._codebook = EuclideanCodebook(dim=dim,
|
348 |
+
codebook_size=codebook_size)
|
349 |
+
|
350 |
+
def decode(self, _ind):
|
351 |
+
return F.embedding(_ind, self._codebook.embed)
|
352 |
+
|
353 |
+
|
354 |
+
class ResidualVectorQuantization(nn.Module):
|
355 |
+
|
356 |
+
def __init__(self, *, num_quantizers, **kwargs):
|
357 |
+
super().__init__()
|
358 |
+
self.layers = nn.ModuleList(
|
359 |
+
[VectorQuantization(**kwargs) for _ in range(num_quantizers)]
|
360 |
+
)
|
361 |
+
|
362 |
+
def decode(self, _ind):
|
363 |
+
x = 0.0
|
364 |
+
for i, _code in enumerate(_ind):
|
365 |
+
x = x + self.layers[i].decode(_code)
|
366 |
+
return x.transpose(1, 2)
|
367 |
+
|
368 |
+
|
369 |
+
class ResidualVectorQuantizer(nn.Module):
|
370 |
+
|
371 |
+
# dimension=128 n_q=4 q_dropout=False bins=2048 decay=0.99 kmeans_init=True
|
372 |
+
# kmeans_iters=50 threshold_ema_dead_code=2
|
373 |
+
# orthogonal_reg_weight=0.0 orthogonal_reg_active_codes_only=False
|
374 |
+
# orthogonal_reg_max_codes=None
|
375 |
+
|
376 |
+
def __init__(
|
377 |
+
self,
|
378 |
+
dimension = 128,
|
379 |
+
n_q = 4,
|
380 |
+
bins = 2048
|
381 |
+
):
|
382 |
+
|
383 |
+
super().__init__()
|
384 |
+
self.vq = ResidualVectorQuantization(dim=dimension,
|
385 |
+
codebook_size=bins,
|
386 |
+
num_quantizers=n_q)
|
387 |
+
|
388 |
+
def decode(self, codes):
|
389 |
+
# codes is [B, K, T], with T frames, K nb of codebooks, vq.decode expects [K, B, T].
|
390 |
+
return self.vq.decode(codes.transpose(0, 1))
|
391 |
+
|
392 |
+
|
393 |
+
class T5(nn.Module):
|
394 |
+
|
395 |
+
def __init__(self):
|
396 |
+
|
397 |
+
super().__init__()
|
398 |
+
self.output_proj = nn.Linear(1024, # t5-large
|
399 |
+
1536) # lm hidden
|
400 |
+
self.t5_tokenizer = T5Tokenizer.from_pretrained('t5-large', legacy=True)
|
401 |
+
t5 = T5EncoderModel.from_pretrained('t5-large').train(mode=False)
|
402 |
+
|
403 |
+
# this makes sure that the t5 is not part
|
404 |
+
# of the saved checkpoint
|
405 |
+
self.__dict__['t5'] = t5.to('cpu')
|
406 |
+
|
407 |
+
def forward(self, prompt):
|
408 |
+
with torch.set_grad_enabled(False): #, torch.autocast(device_type='cpu', dtype=torch.float32):
|
409 |
+
|
410 |
+
bs = len(prompt) // 2
|
411 |
+
d = self.t5_tokenizer(prompt,
|
412 |
+
return_tensors='pt',
|
413 |
+
padding=True).to(self.output_proj.bias.device)
|
414 |
+
d['attention_mask'][bs:, :] = 0 # null condition t5 attn_mask should be zero
|
415 |
+
|
416 |
+
x = self.t5(input_ids=d['input_ids'],
|
417 |
+
attention_mask=d['attention_mask']).last_hidden_state # no kv
|
418 |
+
# Float 16
|
419 |
+
# > self.output_proj() is outside of autocast of t5 - however inside the autocast of lm thus computed in torch.float16
|
420 |
+
x = self.output_proj(x) # nn.Linear() - produces different result if there is no duplicate txt condition here
|
421 |
+
x[bs:, :, :] = 0 # venv/../site-packages/audiocraft/modules/conditioners.py -> tokenize()
|
422 |
+
return x
|
423 |
+
|
424 |
+
|
425 |
+
class LMModel(nn.Module):
|
426 |
+
|
427 |
+
def __init__(self,
|
428 |
+
n_q = 4,
|
429 |
+
card = 2048,
|
430 |
+
dim = 1536
|
431 |
+
):
|
432 |
+
super().__init__()
|
433 |
+
self.cache_lim = -1
|
434 |
+
self.t5 = T5()
|
435 |
+
self.card = card # 2048
|
436 |
+
self.n_draw = 1 # draw > 1 tokens of different CFG scale
|
437 |
+
# batch size > 1 is slower from n_draw as calls transformer on larger batch
|
438 |
+
self.emb = nn.ModuleList([nn.Embedding(self.card + 1, dim) for _ in range(n_q)]) # EMBEDDING HAS 2049
|
439 |
+
self.transformer = StreamingTransformer()
|
440 |
+
self.out_norm = nn.LayerNorm(dim, eps=1e-5)
|
441 |
+
self.linears = nn.ModuleList([nn.Linear(dim, self.card, bias=False) for _ in range(n_q)]) # LINEAR DOESNT HAVE 2049
|
442 |
+
|
443 |
+
def forward(self,
|
444 |
+
sequence,
|
445 |
+
condition_tensors=None,
|
446 |
+
cache_position=None
|
447 |
+
):
|
448 |
+
|
449 |
+
bs, n_q, time_frames = sequence.shape # [bs, 4, time]
|
450 |
+
|
451 |
+
input_ = sum([self.emb[k](sequence[:, k]) for k in range(n_q)])
|
452 |
+
|
453 |
+
out = self.transformer(torch.cat([input_, input_], 0), # duplicate null condition (bs x 2) for ClassifierFreeGuidance
|
454 |
+
cross_attention_src=condition_tensors,
|
455 |
+
cache_position=cache_position)
|
456 |
+
|
457 |
+
out = self.out_norm(out)
|
458 |
+
|
459 |
+
logits = torch.stack([self.linears[k](out) for k in range(n_q)], dim=1) # [2*bs, 4, 1, 2048]
|
460 |
+
logits = 3 * logits[:bs, :, :, :] - self._scale * logits[bs:, :, :, :] # [ bs, 4, n_draw, 2048]
|
461 |
+
|
462 |
+
#bs, n_q, n_draw, vocab = logits.shape
|
463 |
+
tokens = torch.multinomial(torch.softmax(logits.view(bs * self.n_draw * n_q, 2048), dim=1),
|
464 |
+
num_samples=1)
|
465 |
+
return tokens.view(bs, n_q, self.n_draw).transpose(1, 2)
|
466 |
+
|
467 |
+
@torch.no_grad()
|
468 |
+
def generate(self,
|
469 |
+
max_tokens=None,
|
470 |
+
text_condition=None
|
471 |
+
):
|
472 |
+
x = self.t5(text_condition)
|
473 |
+
bs = x.shape[0] // 2 # has null conditions - bs*2*N_REPEAT applys in builders.py
|
474 |
+
self._scale = .3 * torch.rand(1, 1, self.n_draw, 1, device=x.device) + 1.94
|
475 |
+
cache_position = 0
|
476 |
+
|
477 |
+
out_codes = torch.full((bs,
|
478 |
+
self.n_draw,
|
479 |
+
4,
|
480 |
+
4 + 3 + max_tokens), # 4 + max_tokens + 4-1 to have sufficient to index the 1st antidiagonal of 4x4 + 4 xtra tokens
|
481 |
+
self.card,
|
482 |
+
dtype=torch.long,
|
483 |
+
device=x.device) # [bs, n_draw, 4, dur]
|
484 |
+
|
485 |
+
# A/R
|
486 |
+
for offset in range(0, max_tokens + 4 - 1): # max_tokens + n_q - 1
|
487 |
+
|
488 |
+
# extract diagonal via indexing out_codes[ [0, 1, 2, 3], [0, 1, 2, 3] ]
|
489 |
+
next_token = self.forward(out_codes[:, 0, [0, 1, 2, 3], torch.tensor([3, 2, 1, 0]) + offset][:, :, None], # index diagonal & exapnd to [bs, n_q, dur=1]
|
490 |
+
#gen_sequence[:, 0, :, offset-1:offset], # DIAGINDEXING for setting prediction of lm into gen_sequence THE GENSEQUENCE has to be un-delayed in the end [Because it has to be de-delayed for the vocoder then is actually only the lm input that requires to see the delay thus we could just feed by diaggather] so it matches gen_codes -1 a[[0, 1, 2, 3], torch.tensor([0, 1, 2, 3]) + 5] the gen_sequence is indexed by vertical column and fed to lm however the prediction of lm is place diagonally with delay to the gen_sequence
|
491 |
+
condition_tensors=x, # utilisation of the attention mask of txt condition ?
|
492 |
+
cache_position=cache_position) # [bs, n_draw, 4]
|
493 |
+
|
494 |
+
# Fill of next_token should be also placed on antidiagonal [not column]
|
495 |
+
|
496 |
+
# Do Not Overwrite 2048 of TRIU/TRIL = START/END => Do Not Fill them by Predicted Tokens
|
497 |
+
# 0-th antidiagonal should be full of card = [2048, 2048, 2048, 2048]
|
498 |
+
#
|
499 |
+
# [2048, 2048, 2048, 2048, 0, 1, 2, 3, 4, 5, 6, 2048, 2048, 2048],
|
500 |
+
# [2048, 2048, 2048, 2048, 2048, 0, 1, 2, 3, 4, 5, 6, 2048, 2048],
|
501 |
+
# [2048, 2048, 2048, 2048, 2048, 2048, 0, 1, 2, 3, 4, 5, 6, 2048],
|
502 |
+
# [2048, 2048, 2048, 2048, 2048, 2048, 2048, 0, 1, 2, 3, 4, 5, 6]]
|
503 |
+
# NO OVerWriting
|
504 |
+
if offset == 0:
|
505 |
+
|
506 |
+
next_token[:, :, 1:4] = 2048 # self.card - bottom 3 entries of the antidiagonal should remain 2048
|
507 |
+
|
508 |
+
elif offset == 1:
|
509 |
+
|
510 |
+
next_token[:, :, 2:4] = 2048 # bottom 2 entries of the antidiagonal should remain 2048
|
511 |
+
|
512 |
+
elif offset == 2:
|
513 |
+
|
514 |
+
next_token[:, :, 3:4] = 2048
|
515 |
+
|
516 |
+
elif offset == max_tokens:
|
517 |
+
|
518 |
+
next_token[:, :, 0:1] = 2048 # top 1 entry of the antidiagonal should stay to 2048
|
519 |
+
|
520 |
+
elif offset == (max_tokens + 1):
|
521 |
+
|
522 |
+
next_token[:, :, 0:2] = 2048
|
523 |
+
|
524 |
+
elif offset == (max_tokens + 2):
|
525 |
+
|
526 |
+
next_token[:, :, 0:3] = 2048
|
527 |
+
|
528 |
+
else: # offset 3,4,5,6,7...... max_tokens-1 # FILL Complete n_q = 4 ANTIDIAGONAL ENTRIES
|
529 |
+
|
530 |
+
pass #print('No delete anti-diag')
|
531 |
+
|
532 |
+
out_codes[:, :, [0, 1, 2, 3], torch.tensor([3, 2, 1, 0]) + offset + 1] = next_token
|
533 |
+
# Sink Attn
|
534 |
+
if (offset > 0) and (offset % self.cache_lim) == 0:
|
535 |
+
n_preserve = 4
|
536 |
+
self.transformer._flush(n_preserve=n_preserve)
|
537 |
+
cache_position = n_preserve
|
538 |
+
else:
|
539 |
+
cache_position += 1
|
540 |
+
|
541 |
+
# [bs, n_draw, 4, time+xtra] -> [bs, 4, n_draw, time] -> [bs, 4, time * n_draw]
|
542 |
+
out_codes = out_codes[:, :, :, 4:max_tokens+4].transpose(1, 2).reshape(bs, 4, self.n_draw * max_tokens)
|
543 |
+
|
544 |
+
# flush for next API call
|
545 |
+
self.transformer._flush()
|
546 |
+
|
547 |
+
return out_codes # SKIP THE 4 fill 2048
|
548 |
+
|
549 |
+
|
550 |
+
|
551 |
+
|
552 |
+
def create_sin_embedding(positions,
|
553 |
+
dim,
|
554 |
+
max_period=10000
|
555 |
+
):
|
556 |
+
# assert dim % 2 == 0
|
557 |
+
half_dim = dim // 2
|
558 |
+
positions = positions.to(torch.float)
|
559 |
+
adim = torch.arange(half_dim, device=positions.device,
|
560 |
+
dtype=torch.float).view(1, 1, -1)
|
561 |
+
max_period_tensor = torch.full([],
|
562 |
+
max_period,
|
563 |
+
device=positions.device,
|
564 |
+
dtype=torch.float) # avoid sync point
|
565 |
+
phase = positions / (max_period_tensor ** (adim / (half_dim - 1)))
|
566 |
+
# OFFICIAL is torch.float32 HOWEVER self_attn.in_prod_weight = torch.float16
|
567 |
+
return torch.cat([torch.cos(phase), torch.sin(phase)], dim=-1)
|
568 |
+
|
569 |
+
|
570 |
+
class StreamingMultiheadAttention(nn.Module):
|
571 |
+
|
572 |
+
def __init__(self,
|
573 |
+
embed_dim,
|
574 |
+
num_heads,
|
575 |
+
cross_attention=False,
|
576 |
+
):
|
577 |
+
|
578 |
+
super().__init__()
|
579 |
+
|
580 |
+
self.cross_attention = cross_attention
|
581 |
+
# if not self.cross_attention then it has kvcachingn
|
582 |
+
self.k_history = None
|
583 |
+
# cleanup history through LM inside GENERATION - Each 0,..,47 mha has different kv history
|
584 |
+
self.v_history = None
|
585 |
+
self.num_heads = num_heads
|
586 |
+
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=False)
|
587 |
+
self.register_buffer('in_proj_weight', torch.ones((3 * embed_dim, embed_dim),
|
588 |
+
dtype=torch.float))
|
589 |
+
|
590 |
+
def forward(self,
|
591 |
+
query,
|
592 |
+
key=None,
|
593 |
+
value=None):
|
594 |
+
layout = "b h t d"
|
595 |
+
if self.cross_attention:
|
596 |
+
|
597 |
+
# Different queries, keys, values > split in_proj_weight
|
598 |
+
|
599 |
+
dim = self.in_proj_weight.shape[0] // 3
|
600 |
+
|
601 |
+
q = nn.functional.linear(query, self.in_proj_weight[:dim])
|
602 |
+
k = nn.functional.linear(key, self.in_proj_weight[dim: 2 * dim])
|
603 |
+
v = nn.functional.linear(value, self.in_proj_weight[2 * dim:])
|
604 |
+
|
605 |
+
q, k, v = [
|
606 |
+
rearrange(x, f"b t (h d) -> {layout}", h=self.num_heads) for x in [q, k, v]]
|
607 |
+
|
608 |
+
else:
|
609 |
+
|
610 |
+
# Here <else> = self_attention for audio with itself (above is cross attention txt)
|
611 |
+
|
612 |
+
# HISTORY - DIFFERENT FOR EACH TRANSF LAYER
|
613 |
+
|
614 |
+
# here we have different floating values from official
|
615 |
+
projected = nn.functional.linear(query, self.in_proj_weight, None)
|
616 |
+
# print(query.sum(), projected.sum() , self.in_proj_weight.sum(), 'Lc') # verified official AudioGen values
|
617 |
+
bound_layout = "b h p t d"
|
618 |
+
packed = rearrange(
|
619 |
+
projected, f"b t (p h d) -> {bound_layout}", p=3, h=self.num_heads)
|
620 |
+
q, k, v = packed.unbind(dim=2)
|
621 |
+
if self.k_history is not None:
|
622 |
+
# IF ctrl^c during live_demo the assigning of each of kv is non-atomic k!=v
|
623 |
+
# thus it will try to continue with incompatible k/v dims!
|
624 |
+
self.k_history = torch.cat([self.k_history, k], 2)
|
625 |
+
self.v_history = torch.cat([self.v_history, v], 2)
|
626 |
+
else:
|
627 |
+
self.k_history = k
|
628 |
+
self.v_history = v
|
629 |
+
|
630 |
+
# Assign Completed k / v to k / v
|
631 |
+
|
632 |
+
k = self.k_history
|
633 |
+
v = self.v_history
|
634 |
+
|
635 |
+
# -> kv CACHE ONLY APPLIES if not self.cross_attention
|
636 |
+
|
637 |
+
x = torch.nn.functional.scaled_dot_product_attention(
|
638 |
+
q, k, v, attn_mask=None, is_causal=False, dropout_p=0.0)
|
639 |
+
|
640 |
+
x = rearrange(x, f"{layout} -> b t (h d)", h=self.num_heads)
|
641 |
+
x = self.out_proj(x)
|
642 |
+
return x
|
643 |
+
|
644 |
+
|
645 |
+
class StreamingTransformerLayer(nn.Module):
|
646 |
+
|
647 |
+
def __init__(self,
|
648 |
+
d_model,
|
649 |
+
num_heads,
|
650 |
+
dim_feedforward):
|
651 |
+
|
652 |
+
super().__init__()
|
653 |
+
|
654 |
+
self.self_attn = StreamingMultiheadAttention(embed_dim=d_model,
|
655 |
+
num_heads=num_heads)
|
656 |
+
self.linear1 = nn.Linear(d_model, dim_feedforward, bias=False)
|
657 |
+
self.linear2 = nn.Linear(dim_feedforward, d_model, bias=False)
|
658 |
+
self.cross_attention = StreamingMultiheadAttention(embed_dim=d_model,
|
659 |
+
num_heads=num_heads,
|
660 |
+
cross_attention=True)
|
661 |
+
self.norm_cross = nn.LayerNorm(d_model, eps=1e-5)
|
662 |
+
self.norm1 = nn.LayerNorm(d_model, eps=1e-5)
|
663 |
+
self.norm2 = nn.LayerNorm(d_model, eps=1e-5)
|
664 |
+
|
665 |
+
def forward(self,
|
666 |
+
x,
|
667 |
+
cross_attention_src=None):
|
668 |
+
x = x + self.self_attn(self.norm1(x))
|
669 |
+
x = x + self.cross_attention(query=self.norm_cross(x),
|
670 |
+
key=cross_attention_src,
|
671 |
+
value=cross_attention_src) # txtcondition
|
672 |
+
x = x + self.linear2(F.gelu(self.linear1(self.norm2(x))))
|
673 |
+
return x
|
674 |
+
|
675 |
+
|
676 |
+
class StreamingTransformer(nn.Module):
|
677 |
+
|
678 |
+
def __init__(self,
|
679 |
+
d_model=1536,
|
680 |
+
num_heads=24,
|
681 |
+
num_layers=48,
|
682 |
+
dim_feedforward=6144):
|
683 |
+
super().__init__()
|
684 |
+
|
685 |
+
self.layers = nn.ModuleList(
|
686 |
+
[
|
687 |
+
StreamingTransformerLayer(d_model=d_model,
|
688 |
+
num_heads=num_heads,
|
689 |
+
dim_feedforward=dim_feedforward) for _ in range(num_layers)
|
690 |
+
]
|
691 |
+
)
|
692 |
+
|
693 |
+
def forward(self,
|
694 |
+
x,
|
695 |
+
cache_position=None,
|
696 |
+
cross_attention_src=None):
|
697 |
+
|
698 |
+
x = x + create_sin_embedding(
|
699 |
+
torch.zeros(x.shape[0], 1, 1, device=x.device) + cache_position, 1536)
|
700 |
+
|
701 |
+
for lay in self.layers:
|
702 |
+
x = lay(x,
|
703 |
+
cross_attention_src=cross_attention_src)
|
704 |
+
return x
|
705 |
+
|
706 |
+
def _flush(self,
|
707 |
+
n_preserve=None):
|
708 |
+
|
709 |
+
for lay in self.layers:
|
710 |
+
if n_preserve is not None:
|
711 |
+
# cache position is difficult to choose to also preserve kv from end
|
712 |
+
lay.self_attn.k_history = lay.self_attn.k_history[:, :, :n_preserve, :]
|
713 |
+
lay.self_attn.v_history = lay.self_attn.v_history[:, :, :n_preserve, :]
|
714 |
+
else:
|
715 |
+
lay.self_attn.k_history = None
|
716 |
+
lay.self_attn.v_history = None
|
717 |
+
|
718 |
+
|
719 |
+
if __name__ == '__main__':
|
720 |
+
|
721 |
+
import audiofile
|
722 |
+
model = AudioGen().to('cpu')
|
723 |
+
x = model.generate(prompt='swims in lake frogs', duration=6.4).cpu().numpy()
|
724 |
+
audiofile.write('_sound_.wav', x, 16000)
|
requirements.txt
CHANGED
@@ -1,8 +1,6 @@
|
|
1 |
-
|
2 |
nltk
|
3 |
-
pydantic==2.10.6
|
4 |
librosa
|
5 |
-
transformers
|
6 |
phonemizer
|
7 |
audiofile
|
8 |
matplotlib
|
@@ -11,4 +9,8 @@ num2words
|
|
11 |
numpy<2.0.0
|
12 |
gradio==5.27.0
|
13 |
Numbers2Words-Greek
|
14 |
-
|
|
|
|
|
|
|
|
|
|
1 |
+
omegaconf
|
2 |
nltk
|
|
|
3 |
librosa
|
|
|
4 |
phonemizer
|
5 |
audiofile
|
6 |
matplotlib
|
|
|
9 |
numpy<2.0.0
|
10 |
gradio==5.27.0
|
11 |
Numbers2Words-Greek
|
12 |
+
einops
|
13 |
+
torch
|
14 |
+
pydantic==2.10.6
|
15 |
+
transformers==4.49.0
|
16 |
+
sentencepiece
|