CGQN's picture
Upload app.py with huggingface_hub
1d84803 verified
import os
import gradio as gr
import torch
from PIL import Image
from transformers import AutoModel, AutoTokenizer
# Notes:
# - This demo runs on CPU for broader compatibility. It may be slow compared to GPU.
# - If you have a GPU, you can set device="cuda" and possibly use torch_dtype=torch.bfloat16.
# - MiniCPM-V-4_5 uses trust_remote_code; ensure you trust the source.
# - The model expects multi-modal messages in a chat-like format: [{'role': 'user', 'content': [image, text]}]
# - For multi-turn chat, we persist history in Gradio state and pass it back to model.chat.
MODEL_ID = os.environ.get("MINICPM_MODEL_ID", "openbmb/MiniCPM-V-4_5")
DEVICE = "cpu" # Force CPU per user request
DTYPE = torch.float32 # CPU-friendly dtype
# Lazy global variables (loaded on first launch)
_tokenizer = None
_model = None
def load_model():
global _tokenizer, _model
if _model is None or _tokenizer is None:
# Some platforms require setting no_mmap or local_files_only as needed; adjust if necessary.
_model = AutoModel.from_pretrained(
MODEL_ID,
trust_remote_code=True,
attn_implementation="sdpa", # sdpa is fine on CPU; avoid eager per model note
torch_dtype=DTYPE
)
_model = _model.eval().to(DEVICE)
_tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, trust_remote_code=True)
return _model, _tokenizer
def format_history(history):
"""
Convert Gradio-style chat history into model's expected message format.
history: list of tuples (user_text, assistant_text) where user_text may have an <image> placeholder handled separately.
We will store messages in a structured way in state to retain images explicitly instead of parsing text.
This function is not used directly; we keep the raw message structure in state for fidelity.
"""
return history
def predict(image, user_message, history_state, enable_thinking=False, stream=False):
"""
image: PIL.Image or None
user_message: str
history_state: list of dicts in MiniCPM format [{'role': 'user'|'assistant', 'content':[...]}]
"""
model, tokenizer = load_model()
# Initialize history if empty
msgs = history_state if isinstance(history_state, list) else []
# Build the current user content payload
# The model expects a list mixing image(s) and text; include only provided items.
content = []
if image is not None:
if image.mode != "RGB":
image = image.convert("RGB")
content.append(image)
if user_message and user_message.strip():
content.append(user_message.strip())
if len(content) == 0:
return gr.update(), msgs, "Please provide an image and/or a message."
msgs = msgs + [{'role': 'user', 'content': content}]
# Run generation
try:
# model.chat returns either an iterator (when stream=True) or a string
answer = model.chat(
msgs=msgs,
tokenizer=tokenizer,
enable_thinking=bool(enable_thinking),
stream=bool(stream)
)
if stream:
# Concatenate streamed text
generated = []
for chunk in answer:
generated.append(chunk)
yield "\n".join(["".join(generated)]), msgs, None
final_text = "".join(generated)
else:
final_text = answer
# Append assistant message back into msgs
msgs = msgs + [{"role": "assistant", "content": [final_text]}]
# Return final
yield final_text, msgs, None
except Exception as e:
yield gr.update(), msgs, f"Error: {e}"
def clear_state():
return None, [], None
with gr.Blocks(title="MiniCPM-V-4_5 CPU Gradio Demo") as demo:
gr.Markdown("# MiniCPM-V-4_5 (CPU) Demo")
gr.Markdown("Upload an image (optional) and ask a question. Multi-turn chat is supported. Running on CPU may be slow.")
with gr.Row():
with gr.Column(scale=1):
image_in = gr.Image(type="pil", label="Image (optional)")
user_in = gr.Textbox(label="Your Message", placeholder="Ask a question about the image or general query...", lines=3)
with gr.Row():
think_chk = gr.Checkbox(label="Enable Thinking Mode", value=False)
stream_chk = gr.Checkbox(label="Stream Output", value=False)
with gr.Row():
submit_btn = gr.Button("Send", variant="primary")
clear_btn = gr.Button("Clear")
with gr.Column(scale=2):
chat_out = gr.Chatbot(label="Chat", type="messages", height=450, avatar_images=(None, None))
status_box = gr.Markdown("", visible=True)
# Hidden state: we store the raw MiniCPM messages, not just text pairs
state_msgs = gr.State([])
def on_submit(image, message, enable_thinking, stream, msgs):
# Kick off streaming generator
# We'll display only last exchange in Chatbot. Convert msgs to Chatbot-friendly format when yielding.
# For Chatbot display, we reconstruct from msgs
def format_for_chatbot(msgs_local):
chat_pairs = []
# Collect pairs by scanning msgs in order
user_tmp = None
for m in msgs_local:
if m["role"] == "user":
# Convert content to displayable string for Chatbot
parts = []
for c in m["content"]:
if isinstance(c, Image.Image):
parts.append("[Image]")
else:
parts.append(str(c))
user_tmp = " ".join(parts).strip() or "[Image]"
elif m["role"] == "assistant":
assistant_text = " ".join([str(x) for x in m["content"]]) if m["content"] else ""
if user_tmp is None:
chat_pairs.append((None, assistant_text))
else:
chat_pairs.append((user_tmp, assistant_text))
user_tmp = None
return chat_pairs
gen = predict(image, message, msgs, enable_thinking, stream)
if stream:
for partial_text, updated_msgs, err in gen:
# Build display history from updated_msgs + current partial response
display_msgs = updated_msgs.copy()
# Don't duplicate assistant msg until finalized; just show in Chatbot via the last pair
chat_history = format_for_chatbot(display_msgs)
if chat_history and isinstance(partial_text, str) and partial_text:
if chat_history and (not chat_history[-1][1] or chat_history[-1][1] == ""):
# replace last tuple assistant part
u, _ = chat_history[-1]
chat_history[-1] = (u, partial_text)
else:
# append live pair
last_user = None
for m in reversed(display_msgs):
if m["role"] == "user":
parts = []
for c in m["content"]:
if isinstance(c, Image.Image):
parts.append("[Image]")
else:
parts.append(str(c))
last_user = " ".join(parts).strip() or "[Image]"
break
chat_history.append((last_user, partial_text))
status = "" if not err else f"{err}"
yield chat_history, updated_msgs, status, gr.update(value=None), gr.update(value=None)
else:
for final_text, updated_msgs, err in gen:
chat_history = []
# Build chat history from updated_msgs
def format_for_chatbot_final(msgs_local):
pairs = []
u_txt = None
for m in msgs_local:
if m["role"] == "user":
parts = []
for c in m["content"]:
if isinstance(c, Image.Image):
parts.append("[Image]")
else:
parts.append(str(c))
u_txt = " ".join(parts).strip() or "[Image]"
elif m["role"] == "assistant":
a_txt = " ".join([str(x) for x in m["content"]]) if m["content"] else ""
if u_txt is None:
pairs.append((None, a_txt))
else:
pairs.append((u_txt, a_txt))
u_txt = None
return pairs
chat_history = format_for_chatbot_final(updated_msgs)
status = "" if not err else f"{err}"
yield chat_history, updated_msgs, status, gr.update(value=None), gr.update(value=None)
submit_btn.click(
on_submit,
inputs=[image_in, user_in, think_chk, stream_chk, state_msgs],
outputs=[chat_out, state_msgs, status_box, user_in, image_in]
)
clear_btn.click(
fn=clear_state,
inputs=[],
outputs=[user_in, state_msgs, status_box]
).then(
lambda: [],
inputs=None,
outputs=chat_out
)
# Preload model on app start (optional; keeps UI responsive on first query)
demo.load(lambda: "Model loading on CPU... Please wait a moment.", outputs=status_box).then(
lambda: (load_model() or True) and "Model loaded. Ready!",
outputs=status_box
)
if __name__ == "__main__":
# Set server_name="0.0.0.0" to expose externally if needed.
demo.queue(max_size=8, concurrency_count=1).launch()