Spaces:
Runtime error
Runtime error
import os | |
import gradio as gr | |
import torch | |
from PIL import Image | |
from transformers import AutoModel, AutoTokenizer | |
# Notes: | |
# - This demo runs on CPU for broader compatibility. It may be slow compared to GPU. | |
# - If you have a GPU, you can set device="cuda" and possibly use torch_dtype=torch.bfloat16. | |
# - MiniCPM-V-4_5 uses trust_remote_code; ensure you trust the source. | |
# - The model expects multi-modal messages in a chat-like format: [{'role': 'user', 'content': [image, text]}] | |
# - For multi-turn chat, we persist history in Gradio state and pass it back to model.chat. | |
MODEL_ID = os.environ.get("MINICPM_MODEL_ID", "openbmb/MiniCPM-V-4_5") | |
DEVICE = "cpu" # Force CPU per user request | |
DTYPE = torch.float32 # CPU-friendly dtype | |
# Lazy global variables (loaded on first launch) | |
_tokenizer = None | |
_model = None | |
def load_model(): | |
global _tokenizer, _model | |
if _model is None or _tokenizer is None: | |
# Some platforms require setting no_mmap or local_files_only as needed; adjust if necessary. | |
_model = AutoModel.from_pretrained( | |
MODEL_ID, | |
trust_remote_code=True, | |
attn_implementation="sdpa", # sdpa is fine on CPU; avoid eager per model note | |
torch_dtype=DTYPE | |
) | |
_model = _model.eval().to(DEVICE) | |
_tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, trust_remote_code=True) | |
return _model, _tokenizer | |
def format_history(history): | |
""" | |
Convert Gradio-style chat history into model's expected message format. | |
history: list of tuples (user_text, assistant_text) where user_text may have an <image> placeholder handled separately. | |
We will store messages in a structured way in state to retain images explicitly instead of parsing text. | |
This function is not used directly; we keep the raw message structure in state for fidelity. | |
""" | |
return history | |
def predict(image, user_message, history_state, enable_thinking=False, stream=False): | |
""" | |
image: PIL.Image or None | |
user_message: str | |
history_state: list of dicts in MiniCPM format [{'role': 'user'|'assistant', 'content':[...]}] | |
""" | |
model, tokenizer = load_model() | |
# Initialize history if empty | |
msgs = history_state if isinstance(history_state, list) else [] | |
# Build the current user content payload | |
# The model expects a list mixing image(s) and text; include only provided items. | |
content = [] | |
if image is not None: | |
if image.mode != "RGB": | |
image = image.convert("RGB") | |
content.append(image) | |
if user_message and user_message.strip(): | |
content.append(user_message.strip()) | |
if len(content) == 0: | |
return gr.update(), msgs, "Please provide an image and/or a message." | |
msgs = msgs + [{'role': 'user', 'content': content}] | |
# Run generation | |
try: | |
# model.chat returns either an iterator (when stream=True) or a string | |
answer = model.chat( | |
msgs=msgs, | |
tokenizer=tokenizer, | |
enable_thinking=bool(enable_thinking), | |
stream=bool(stream) | |
) | |
if stream: | |
# Concatenate streamed text | |
generated = [] | |
for chunk in answer: | |
generated.append(chunk) | |
yield "\n".join(["".join(generated)]), msgs, None | |
final_text = "".join(generated) | |
else: | |
final_text = answer | |
# Append assistant message back into msgs | |
msgs = msgs + [{"role": "assistant", "content": [final_text]}] | |
# Return final | |
yield final_text, msgs, None | |
except Exception as e: | |
yield gr.update(), msgs, f"Error: {e}" | |
def clear_state(): | |
return None, [], None | |
with gr.Blocks(title="MiniCPM-V-4_5 CPU Gradio Demo") as demo: | |
gr.Markdown("# MiniCPM-V-4_5 (CPU) Demo") | |
gr.Markdown("Upload an image (optional) and ask a question. Multi-turn chat is supported. Running on CPU may be slow.") | |
with gr.Row(): | |
with gr.Column(scale=1): | |
image_in = gr.Image(type="pil", label="Image (optional)") | |
user_in = gr.Textbox(label="Your Message", placeholder="Ask a question about the image or general query...", lines=3) | |
with gr.Row(): | |
think_chk = gr.Checkbox(label="Enable Thinking Mode", value=False) | |
stream_chk = gr.Checkbox(label="Stream Output", value=False) | |
with gr.Row(): | |
submit_btn = gr.Button("Send", variant="primary") | |
clear_btn = gr.Button("Clear") | |
with gr.Column(scale=2): | |
chat_out = gr.Chatbot(label="Chat", type="messages", height=450, avatar_images=(None, None)) | |
status_box = gr.Markdown("", visible=True) | |
# Hidden state: we store the raw MiniCPM messages, not just text pairs | |
state_msgs = gr.State([]) | |
def on_submit(image, message, enable_thinking, stream, msgs): | |
# Kick off streaming generator | |
# We'll display only last exchange in Chatbot. Convert msgs to Chatbot-friendly format when yielding. | |
# For Chatbot display, we reconstruct from msgs | |
def format_for_chatbot(msgs_local): | |
chat_pairs = [] | |
# Collect pairs by scanning msgs in order | |
user_tmp = None | |
for m in msgs_local: | |
if m["role"] == "user": | |
# Convert content to displayable string for Chatbot | |
parts = [] | |
for c in m["content"]: | |
if isinstance(c, Image.Image): | |
parts.append("[Image]") | |
else: | |
parts.append(str(c)) | |
user_tmp = " ".join(parts).strip() or "[Image]" | |
elif m["role"] == "assistant": | |
assistant_text = " ".join([str(x) for x in m["content"]]) if m["content"] else "" | |
if user_tmp is None: | |
chat_pairs.append((None, assistant_text)) | |
else: | |
chat_pairs.append((user_tmp, assistant_text)) | |
user_tmp = None | |
return chat_pairs | |
gen = predict(image, message, msgs, enable_thinking, stream) | |
if stream: | |
for partial_text, updated_msgs, err in gen: | |
# Build display history from updated_msgs + current partial response | |
display_msgs = updated_msgs.copy() | |
# Don't duplicate assistant msg until finalized; just show in Chatbot via the last pair | |
chat_history = format_for_chatbot(display_msgs) | |
if chat_history and isinstance(partial_text, str) and partial_text: | |
if chat_history and (not chat_history[-1][1] or chat_history[-1][1] == ""): | |
# replace last tuple assistant part | |
u, _ = chat_history[-1] | |
chat_history[-1] = (u, partial_text) | |
else: | |
# append live pair | |
last_user = None | |
for m in reversed(display_msgs): | |
if m["role"] == "user": | |
parts = [] | |
for c in m["content"]: | |
if isinstance(c, Image.Image): | |
parts.append("[Image]") | |
else: | |
parts.append(str(c)) | |
last_user = " ".join(parts).strip() or "[Image]" | |
break | |
chat_history.append((last_user, partial_text)) | |
status = "" if not err else f"{err}" | |
yield chat_history, updated_msgs, status, gr.update(value=None), gr.update(value=None) | |
else: | |
for final_text, updated_msgs, err in gen: | |
chat_history = [] | |
# Build chat history from updated_msgs | |
def format_for_chatbot_final(msgs_local): | |
pairs = [] | |
u_txt = None | |
for m in msgs_local: | |
if m["role"] == "user": | |
parts = [] | |
for c in m["content"]: | |
if isinstance(c, Image.Image): | |
parts.append("[Image]") | |
else: | |
parts.append(str(c)) | |
u_txt = " ".join(parts).strip() or "[Image]" | |
elif m["role"] == "assistant": | |
a_txt = " ".join([str(x) for x in m["content"]]) if m["content"] else "" | |
if u_txt is None: | |
pairs.append((None, a_txt)) | |
else: | |
pairs.append((u_txt, a_txt)) | |
u_txt = None | |
return pairs | |
chat_history = format_for_chatbot_final(updated_msgs) | |
status = "" if not err else f"{err}" | |
yield chat_history, updated_msgs, status, gr.update(value=None), gr.update(value=None) | |
submit_btn.click( | |
on_submit, | |
inputs=[image_in, user_in, think_chk, stream_chk, state_msgs], | |
outputs=[chat_out, state_msgs, status_box, user_in, image_in] | |
) | |
clear_btn.click( | |
fn=clear_state, | |
inputs=[], | |
outputs=[user_in, state_msgs, status_box] | |
).then( | |
lambda: [], | |
inputs=None, | |
outputs=chat_out | |
) | |
# Preload model on app start (optional; keeps UI responsive on first query) | |
demo.load(lambda: "Model loading on CPU... Please wait a moment.", outputs=status_box).then( | |
lambda: (load_model() or True) and "Model loaded. Ready!", | |
outputs=status_box | |
) | |
if __name__ == "__main__": | |
# Set server_name="0.0.0.0" to expose externally if needed. | |
demo.queue(max_size=8, concurrency_count=1).launch() |