File size: 10,064 Bytes
1d84803
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
import os
import gradio as gr
import torch
from PIL import Image
from transformers import AutoModel, AutoTokenizer

# Notes:
# - This demo runs on CPU for broader compatibility. It may be slow compared to GPU.
# - If you have a GPU, you can set device="cuda" and possibly use torch_dtype=torch.bfloat16.
# - MiniCPM-V-4_5 uses trust_remote_code; ensure you trust the source.
# - The model expects multi-modal messages in a chat-like format: [{'role': 'user', 'content': [image, text]}]
# - For multi-turn chat, we persist history in Gradio state and pass it back to model.chat.

MODEL_ID = os.environ.get("MINICPM_MODEL_ID", "openbmb/MiniCPM-V-4_5")
DEVICE = "cpu"  # Force CPU per user request
DTYPE = torch.float32  # CPU-friendly dtype

# Lazy global variables (loaded on first launch)
_tokenizer = None
_model = None

def load_model():
    global _tokenizer, _model
    if _model is None or _tokenizer is None:
        # Some platforms require setting no_mmap or local_files_only as needed; adjust if necessary.
        _model = AutoModel.from_pretrained(
            MODEL_ID,
            trust_remote_code=True,
            attn_implementation="sdpa",  # sdpa is fine on CPU; avoid eager per model note
            torch_dtype=DTYPE
        )
        _model = _model.eval().to(DEVICE)
        _tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, trust_remote_code=True)
    return _model, _tokenizer

def format_history(history):
    """
    Convert Gradio-style chat history into model's expected message format.
    history: list of tuples (user_text, assistant_text) where user_text may have an <image> placeholder handled separately.
    We will store messages in a structured way in state to retain images explicitly instead of parsing text.
    This function is not used directly; we keep the raw message structure in state for fidelity.
    """
    return history

def predict(image, user_message, history_state, enable_thinking=False, stream=False):
    """
    image: PIL.Image or None
    user_message: str
    history_state: list of dicts in MiniCPM format [{'role': 'user'|'assistant', 'content':[...]}]
    """
    model, tokenizer = load_model()

    # Initialize history if empty
    msgs = history_state if isinstance(history_state, list) else []

    # Build the current user content payload
    # The model expects a list mixing image(s) and text; include only provided items.
    content = []
    if image is not None:
        if image.mode != "RGB":
            image = image.convert("RGB")
        content.append(image)
    if user_message and user_message.strip():
        content.append(user_message.strip())

    if len(content) == 0:
        return gr.update(), msgs, "Please provide an image and/or a message."

    msgs = msgs + [{'role': 'user', 'content': content}]

    # Run generation
    try:
        # model.chat returns either an iterator (when stream=True) or a string
        answer = model.chat(
            msgs=msgs,
            tokenizer=tokenizer,
            enable_thinking=bool(enable_thinking),
            stream=bool(stream)
        )

        if stream:
            # Concatenate streamed text
            generated = []
            for chunk in answer:
                generated.append(chunk)
                yield "\n".join(["".join(generated)]), msgs, None
            final_text = "".join(generated)
        else:
            final_text = answer

        # Append assistant message back into msgs
        msgs = msgs + [{"role": "assistant", "content": [final_text]}]

        # Return final
        yield final_text, msgs, None

    except Exception as e:
        yield gr.update(), msgs, f"Error: {e}"

def clear_state():
    return None, [], None

with gr.Blocks(title="MiniCPM-V-4_5 CPU Gradio Demo") as demo:
    gr.Markdown("# MiniCPM-V-4_5 (CPU) Demo")
    gr.Markdown("Upload an image (optional) and ask a question. Multi-turn chat is supported. Running on CPU may be slow.")

    with gr.Row():
        with gr.Column(scale=1):
            image_in = gr.Image(type="pil", label="Image (optional)")
            user_in = gr.Textbox(label="Your Message", placeholder="Ask a question about the image or general query...", lines=3)
            with gr.Row():
                think_chk = gr.Checkbox(label="Enable Thinking Mode", value=False)
                stream_chk = gr.Checkbox(label="Stream Output", value=False)
            with gr.Row():
                submit_btn = gr.Button("Send", variant="primary")
                clear_btn = gr.Button("Clear")

        with gr.Column(scale=2):
            chat_out = gr.Chatbot(label="Chat", type="messages", height=450, avatar_images=(None, None))
            status_box = gr.Markdown("", visible=True)

    # Hidden state: we store the raw MiniCPM messages, not just text pairs
    state_msgs = gr.State([])

    def on_submit(image, message, enable_thinking, stream, msgs):
        # Kick off streaming generator
        # We'll display only last exchange in Chatbot. Convert msgs to Chatbot-friendly format when yielding.
        # For Chatbot display, we reconstruct from msgs
        def format_for_chatbot(msgs_local):
            chat_pairs = []
            # Collect pairs by scanning msgs in order
            user_tmp = None
            for m in msgs_local:
                if m["role"] == "user":
                    # Convert content to displayable string for Chatbot
                    parts = []
                    for c in m["content"]:
                        if isinstance(c, Image.Image):
                            parts.append("[Image]")
                        else:
                            parts.append(str(c))
                    user_tmp = " ".join(parts).strip() or "[Image]"
                elif m["role"] == "assistant":
                    assistant_text = " ".join([str(x) for x in m["content"]]) if m["content"] else ""
                    if user_tmp is None:
                        chat_pairs.append((None, assistant_text))
                    else:
                        chat_pairs.append((user_tmp, assistant_text))
                        user_tmp = None
            return chat_pairs

        gen = predict(image, message, msgs, enable_thinking, stream)
        if stream:
            for partial_text, updated_msgs, err in gen:
                # Build display history from updated_msgs + current partial response
                display_msgs = updated_msgs.copy()
                # Don't duplicate assistant msg until finalized; just show in Chatbot via the last pair
                chat_history = format_for_chatbot(display_msgs)
                if chat_history and isinstance(partial_text, str) and partial_text:
                    if chat_history and (not chat_history[-1][1] or chat_history[-1][1] == ""):
                        # replace last tuple assistant part
                        u, _ = chat_history[-1]
                        chat_history[-1] = (u, partial_text)
                    else:
                        # append live pair
                        last_user = None
                        for m in reversed(display_msgs):
                            if m["role"] == "user":
                                parts = []
                                for c in m["content"]:
                                    if isinstance(c, Image.Image):
                                        parts.append("[Image]")
                                    else:
                                        parts.append(str(c))
                                last_user = " ".join(parts).strip() or "[Image]"
                                break
                        chat_history.append((last_user, partial_text))
                status = "" if not err else f"{err}"
                yield chat_history, updated_msgs, status, gr.update(value=None), gr.update(value=None)
        else:
            for final_text, updated_msgs, err in gen:
                chat_history = []
                # Build chat history from updated_msgs
                def format_for_chatbot_final(msgs_local):
                    pairs = []
                    u_txt = None
                    for m in msgs_local:
                        if m["role"] == "user":
                            parts = []
                            for c in m["content"]:
                                if isinstance(c, Image.Image):
                                    parts.append("[Image]")
                                else:
                                    parts.append(str(c))
                            u_txt = " ".join(parts).strip() or "[Image]"
                        elif m["role"] == "assistant":
                            a_txt = " ".join([str(x) for x in m["content"]]) if m["content"] else ""
                            if u_txt is None:
                                pairs.append((None, a_txt))
                            else:
                                pairs.append((u_txt, a_txt))
                                u_txt = None
                    return pairs

                chat_history = format_for_chatbot_final(updated_msgs)
                status = "" if not err else f"{err}"
                yield chat_history, updated_msgs, status, gr.update(value=None), gr.update(value=None)

    submit_btn.click(
        on_submit,
        inputs=[image_in, user_in, think_chk, stream_chk, state_msgs],
        outputs=[chat_out, state_msgs, status_box, user_in, image_in]
    )

    clear_btn.click(
        fn=clear_state,
        inputs=[],
        outputs=[user_in, state_msgs, status_box]
    ).then(
        lambda: [],
        inputs=None,
        outputs=chat_out
    )

    # Preload model on app start (optional; keeps UI responsive on first query)
    demo.load(lambda: "Model loading on CPU... Please wait a moment.", outputs=status_box).then(
        lambda: (load_model() or True) and "Model loaded. Ready!",
        outputs=status_box
    )

if __name__ == "__main__":
    # Set server_name="0.0.0.0" to expose externally if needed.
    demo.queue(max_size=8, concurrency_count=1).launch()