Spaces:
Runtime error
Runtime error
Upload app.py with huggingface_hub
Browse files
app.py
ADDED
@@ -0,0 +1,233 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import gradio as gr
|
3 |
+
import torch
|
4 |
+
from PIL import Image
|
5 |
+
from transformers import AutoModel, AutoTokenizer
|
6 |
+
|
7 |
+
# Notes:
|
8 |
+
# - This demo runs on CPU for broader compatibility. It may be slow compared to GPU.
|
9 |
+
# - If you have a GPU, you can set device="cuda" and possibly use torch_dtype=torch.bfloat16.
|
10 |
+
# - MiniCPM-V-4_5 uses trust_remote_code; ensure you trust the source.
|
11 |
+
# - The model expects multi-modal messages in a chat-like format: [{'role': 'user', 'content': [image, text]}]
|
12 |
+
# - For multi-turn chat, we persist history in Gradio state and pass it back to model.chat.
|
13 |
+
|
14 |
+
MODEL_ID = os.environ.get("MINICPM_MODEL_ID", "openbmb/MiniCPM-V-4_5")
|
15 |
+
DEVICE = "cpu" # Force CPU per user request
|
16 |
+
DTYPE = torch.float32 # CPU-friendly dtype
|
17 |
+
|
18 |
+
# Lazy global variables (loaded on first launch)
|
19 |
+
_tokenizer = None
|
20 |
+
_model = None
|
21 |
+
|
22 |
+
def load_model():
|
23 |
+
global _tokenizer, _model
|
24 |
+
if _model is None or _tokenizer is None:
|
25 |
+
# Some platforms require setting no_mmap or local_files_only as needed; adjust if necessary.
|
26 |
+
_model = AutoModel.from_pretrained(
|
27 |
+
MODEL_ID,
|
28 |
+
trust_remote_code=True,
|
29 |
+
attn_implementation="sdpa", # sdpa is fine on CPU; avoid eager per model note
|
30 |
+
torch_dtype=DTYPE
|
31 |
+
)
|
32 |
+
_model = _model.eval().to(DEVICE)
|
33 |
+
_tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, trust_remote_code=True)
|
34 |
+
return _model, _tokenizer
|
35 |
+
|
36 |
+
def format_history(history):
|
37 |
+
"""
|
38 |
+
Convert Gradio-style chat history into model's expected message format.
|
39 |
+
history: list of tuples (user_text, assistant_text) where user_text may have an <image> placeholder handled separately.
|
40 |
+
We will store messages in a structured way in state to retain images explicitly instead of parsing text.
|
41 |
+
This function is not used directly; we keep the raw message structure in state for fidelity.
|
42 |
+
"""
|
43 |
+
return history
|
44 |
+
|
45 |
+
def predict(image, user_message, history_state, enable_thinking=False, stream=False):
|
46 |
+
"""
|
47 |
+
image: PIL.Image or None
|
48 |
+
user_message: str
|
49 |
+
history_state: list of dicts in MiniCPM format [{'role': 'user'|'assistant', 'content':[...]}]
|
50 |
+
"""
|
51 |
+
model, tokenizer = load_model()
|
52 |
+
|
53 |
+
# Initialize history if empty
|
54 |
+
msgs = history_state if isinstance(history_state, list) else []
|
55 |
+
|
56 |
+
# Build the current user content payload
|
57 |
+
# The model expects a list mixing image(s) and text; include only provided items.
|
58 |
+
content = []
|
59 |
+
if image is not None:
|
60 |
+
if image.mode != "RGB":
|
61 |
+
image = image.convert("RGB")
|
62 |
+
content.append(image)
|
63 |
+
if user_message and user_message.strip():
|
64 |
+
content.append(user_message.strip())
|
65 |
+
|
66 |
+
if len(content) == 0:
|
67 |
+
return gr.update(), msgs, "Please provide an image and/or a message."
|
68 |
+
|
69 |
+
msgs = msgs + [{'role': 'user', 'content': content}]
|
70 |
+
|
71 |
+
# Run generation
|
72 |
+
try:
|
73 |
+
# model.chat returns either an iterator (when stream=True) or a string
|
74 |
+
answer = model.chat(
|
75 |
+
msgs=msgs,
|
76 |
+
tokenizer=tokenizer,
|
77 |
+
enable_thinking=bool(enable_thinking),
|
78 |
+
stream=bool(stream)
|
79 |
+
)
|
80 |
+
|
81 |
+
if stream:
|
82 |
+
# Concatenate streamed text
|
83 |
+
generated = []
|
84 |
+
for chunk in answer:
|
85 |
+
generated.append(chunk)
|
86 |
+
yield "\n".join(["".join(generated)]), msgs, None
|
87 |
+
final_text = "".join(generated)
|
88 |
+
else:
|
89 |
+
final_text = answer
|
90 |
+
|
91 |
+
# Append assistant message back into msgs
|
92 |
+
msgs = msgs + [{"role": "assistant", "content": [final_text]}]
|
93 |
+
|
94 |
+
# Return final
|
95 |
+
yield final_text, msgs, None
|
96 |
+
|
97 |
+
except Exception as e:
|
98 |
+
yield gr.update(), msgs, f"Error: {e}"
|
99 |
+
|
100 |
+
def clear_state():
|
101 |
+
return None, [], None
|
102 |
+
|
103 |
+
with gr.Blocks(title="MiniCPM-V-4_5 CPU Gradio Demo") as demo:
|
104 |
+
gr.Markdown("# MiniCPM-V-4_5 (CPU) Demo")
|
105 |
+
gr.Markdown("Upload an image (optional) and ask a question. Multi-turn chat is supported. Running on CPU may be slow.")
|
106 |
+
|
107 |
+
with gr.Row():
|
108 |
+
with gr.Column(scale=1):
|
109 |
+
image_in = gr.Image(type="pil", label="Image (optional)")
|
110 |
+
user_in = gr.Textbox(label="Your Message", placeholder="Ask a question about the image or general query...", lines=3)
|
111 |
+
with gr.Row():
|
112 |
+
think_chk = gr.Checkbox(label="Enable Thinking Mode", value=False)
|
113 |
+
stream_chk = gr.Checkbox(label="Stream Output", value=False)
|
114 |
+
with gr.Row():
|
115 |
+
submit_btn = gr.Button("Send", variant="primary")
|
116 |
+
clear_btn = gr.Button("Clear")
|
117 |
+
|
118 |
+
with gr.Column(scale=2):
|
119 |
+
chat_out = gr.Chatbot(label="Chat", type="messages", height=450, avatar_images=(None, None))
|
120 |
+
status_box = gr.Markdown("", visible=True)
|
121 |
+
|
122 |
+
# Hidden state: we store the raw MiniCPM messages, not just text pairs
|
123 |
+
state_msgs = gr.State([])
|
124 |
+
|
125 |
+
def on_submit(image, message, enable_thinking, stream, msgs):
|
126 |
+
# Kick off streaming generator
|
127 |
+
# We'll display only last exchange in Chatbot. Convert msgs to Chatbot-friendly format when yielding.
|
128 |
+
# For Chatbot display, we reconstruct from msgs
|
129 |
+
def format_for_chatbot(msgs_local):
|
130 |
+
chat_pairs = []
|
131 |
+
# Collect pairs by scanning msgs in order
|
132 |
+
user_tmp = None
|
133 |
+
for m in msgs_local:
|
134 |
+
if m["role"] == "user":
|
135 |
+
# Convert content to displayable string for Chatbot
|
136 |
+
parts = []
|
137 |
+
for c in m["content"]:
|
138 |
+
if isinstance(c, Image.Image):
|
139 |
+
parts.append("[Image]")
|
140 |
+
else:
|
141 |
+
parts.append(str(c))
|
142 |
+
user_tmp = " ".join(parts).strip() or "[Image]"
|
143 |
+
elif m["role"] == "assistant":
|
144 |
+
assistant_text = " ".join([str(x) for x in m["content"]]) if m["content"] else ""
|
145 |
+
if user_tmp is None:
|
146 |
+
chat_pairs.append((None, assistant_text))
|
147 |
+
else:
|
148 |
+
chat_pairs.append((user_tmp, assistant_text))
|
149 |
+
user_tmp = None
|
150 |
+
return chat_pairs
|
151 |
+
|
152 |
+
gen = predict(image, message, msgs, enable_thinking, stream)
|
153 |
+
if stream:
|
154 |
+
for partial_text, updated_msgs, err in gen:
|
155 |
+
# Build display history from updated_msgs + current partial response
|
156 |
+
display_msgs = updated_msgs.copy()
|
157 |
+
# Don't duplicate assistant msg until finalized; just show in Chatbot via the last pair
|
158 |
+
chat_history = format_for_chatbot(display_msgs)
|
159 |
+
if chat_history and isinstance(partial_text, str) and partial_text:
|
160 |
+
if chat_history and (not chat_history[-1][1] or chat_history[-1][1] == ""):
|
161 |
+
# replace last tuple assistant part
|
162 |
+
u, _ = chat_history[-1]
|
163 |
+
chat_history[-1] = (u, partial_text)
|
164 |
+
else:
|
165 |
+
# append live pair
|
166 |
+
last_user = None
|
167 |
+
for m in reversed(display_msgs):
|
168 |
+
if m["role"] == "user":
|
169 |
+
parts = []
|
170 |
+
for c in m["content"]:
|
171 |
+
if isinstance(c, Image.Image):
|
172 |
+
parts.append("[Image]")
|
173 |
+
else:
|
174 |
+
parts.append(str(c))
|
175 |
+
last_user = " ".join(parts).strip() or "[Image]"
|
176 |
+
break
|
177 |
+
chat_history.append((last_user, partial_text))
|
178 |
+
status = "" if not err else f"{err}"
|
179 |
+
yield chat_history, updated_msgs, status, gr.update(value=None), gr.update(value=None)
|
180 |
+
else:
|
181 |
+
for final_text, updated_msgs, err in gen:
|
182 |
+
chat_history = []
|
183 |
+
# Build chat history from updated_msgs
|
184 |
+
def format_for_chatbot_final(msgs_local):
|
185 |
+
pairs = []
|
186 |
+
u_txt = None
|
187 |
+
for m in msgs_local:
|
188 |
+
if m["role"] == "user":
|
189 |
+
parts = []
|
190 |
+
for c in m["content"]:
|
191 |
+
if isinstance(c, Image.Image):
|
192 |
+
parts.append("[Image]")
|
193 |
+
else:
|
194 |
+
parts.append(str(c))
|
195 |
+
u_txt = " ".join(parts).strip() or "[Image]"
|
196 |
+
elif m["role"] == "assistant":
|
197 |
+
a_txt = " ".join([str(x) for x in m["content"]]) if m["content"] else ""
|
198 |
+
if u_txt is None:
|
199 |
+
pairs.append((None, a_txt))
|
200 |
+
else:
|
201 |
+
pairs.append((u_txt, a_txt))
|
202 |
+
u_txt = None
|
203 |
+
return pairs
|
204 |
+
|
205 |
+
chat_history = format_for_chatbot_final(updated_msgs)
|
206 |
+
status = "" if not err else f"{err}"
|
207 |
+
yield chat_history, updated_msgs, status, gr.update(value=None), gr.update(value=None)
|
208 |
+
|
209 |
+
submit_btn.click(
|
210 |
+
on_submit,
|
211 |
+
inputs=[image_in, user_in, think_chk, stream_chk, state_msgs],
|
212 |
+
outputs=[chat_out, state_msgs, status_box, user_in, image_in]
|
213 |
+
)
|
214 |
+
|
215 |
+
clear_btn.click(
|
216 |
+
fn=clear_state,
|
217 |
+
inputs=[],
|
218 |
+
outputs=[user_in, state_msgs, status_box]
|
219 |
+
).then(
|
220 |
+
lambda: [],
|
221 |
+
inputs=None,
|
222 |
+
outputs=chat_out
|
223 |
+
)
|
224 |
+
|
225 |
+
# Preload model on app start (optional; keeps UI responsive on first query)
|
226 |
+
demo.load(lambda: "Model loading on CPU... Please wait a moment.", outputs=status_box).then(
|
227 |
+
lambda: (load_model() or True) and "Model loaded. Ready!",
|
228 |
+
outputs=status_box
|
229 |
+
)
|
230 |
+
|
231 |
+
if __name__ == "__main__":
|
232 |
+
# Set server_name="0.0.0.0" to expose externally if needed.
|
233 |
+
demo.queue(max_size=8, concurrency_count=1).launch()
|