Spaces:
Runtime error
Runtime error
Upload app.py with huggingface_hub
Browse files
app.py
ADDED
|
@@ -0,0 +1,233 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import gradio as gr
|
| 3 |
+
import torch
|
| 4 |
+
from PIL import Image
|
| 5 |
+
from transformers import AutoModel, AutoTokenizer
|
| 6 |
+
|
| 7 |
+
# Notes:
|
| 8 |
+
# - This demo runs on CPU for broader compatibility. It may be slow compared to GPU.
|
| 9 |
+
# - If you have a GPU, you can set device="cuda" and possibly use torch_dtype=torch.bfloat16.
|
| 10 |
+
# - MiniCPM-V-4_5 uses trust_remote_code; ensure you trust the source.
|
| 11 |
+
# - The model expects multi-modal messages in a chat-like format: [{'role': 'user', 'content': [image, text]}]
|
| 12 |
+
# - For multi-turn chat, we persist history in Gradio state and pass it back to model.chat.
|
| 13 |
+
|
| 14 |
+
MODEL_ID = os.environ.get("MINICPM_MODEL_ID", "openbmb/MiniCPM-V-4_5")
|
| 15 |
+
DEVICE = "cpu" # Force CPU per user request
|
| 16 |
+
DTYPE = torch.float32 # CPU-friendly dtype
|
| 17 |
+
|
| 18 |
+
# Lazy global variables (loaded on first launch)
|
| 19 |
+
_tokenizer = None
|
| 20 |
+
_model = None
|
| 21 |
+
|
| 22 |
+
def load_model():
|
| 23 |
+
global _tokenizer, _model
|
| 24 |
+
if _model is None or _tokenizer is None:
|
| 25 |
+
# Some platforms require setting no_mmap or local_files_only as needed; adjust if necessary.
|
| 26 |
+
_model = AutoModel.from_pretrained(
|
| 27 |
+
MODEL_ID,
|
| 28 |
+
trust_remote_code=True,
|
| 29 |
+
attn_implementation="sdpa", # sdpa is fine on CPU; avoid eager per model note
|
| 30 |
+
torch_dtype=DTYPE
|
| 31 |
+
)
|
| 32 |
+
_model = _model.eval().to(DEVICE)
|
| 33 |
+
_tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, trust_remote_code=True)
|
| 34 |
+
return _model, _tokenizer
|
| 35 |
+
|
| 36 |
+
def format_history(history):
|
| 37 |
+
"""
|
| 38 |
+
Convert Gradio-style chat history into model's expected message format.
|
| 39 |
+
history: list of tuples (user_text, assistant_text) where user_text may have an <image> placeholder handled separately.
|
| 40 |
+
We will store messages in a structured way in state to retain images explicitly instead of parsing text.
|
| 41 |
+
This function is not used directly; we keep the raw message structure in state for fidelity.
|
| 42 |
+
"""
|
| 43 |
+
return history
|
| 44 |
+
|
| 45 |
+
def predict(image, user_message, history_state, enable_thinking=False, stream=False):
|
| 46 |
+
"""
|
| 47 |
+
image: PIL.Image or None
|
| 48 |
+
user_message: str
|
| 49 |
+
history_state: list of dicts in MiniCPM format [{'role': 'user'|'assistant', 'content':[...]}]
|
| 50 |
+
"""
|
| 51 |
+
model, tokenizer = load_model()
|
| 52 |
+
|
| 53 |
+
# Initialize history if empty
|
| 54 |
+
msgs = history_state if isinstance(history_state, list) else []
|
| 55 |
+
|
| 56 |
+
# Build the current user content payload
|
| 57 |
+
# The model expects a list mixing image(s) and text; include only provided items.
|
| 58 |
+
content = []
|
| 59 |
+
if image is not None:
|
| 60 |
+
if image.mode != "RGB":
|
| 61 |
+
image = image.convert("RGB")
|
| 62 |
+
content.append(image)
|
| 63 |
+
if user_message and user_message.strip():
|
| 64 |
+
content.append(user_message.strip())
|
| 65 |
+
|
| 66 |
+
if len(content) == 0:
|
| 67 |
+
return gr.update(), msgs, "Please provide an image and/or a message."
|
| 68 |
+
|
| 69 |
+
msgs = msgs + [{'role': 'user', 'content': content}]
|
| 70 |
+
|
| 71 |
+
# Run generation
|
| 72 |
+
try:
|
| 73 |
+
# model.chat returns either an iterator (when stream=True) or a string
|
| 74 |
+
answer = model.chat(
|
| 75 |
+
msgs=msgs,
|
| 76 |
+
tokenizer=tokenizer,
|
| 77 |
+
enable_thinking=bool(enable_thinking),
|
| 78 |
+
stream=bool(stream)
|
| 79 |
+
)
|
| 80 |
+
|
| 81 |
+
if stream:
|
| 82 |
+
# Concatenate streamed text
|
| 83 |
+
generated = []
|
| 84 |
+
for chunk in answer:
|
| 85 |
+
generated.append(chunk)
|
| 86 |
+
yield "\n".join(["".join(generated)]), msgs, None
|
| 87 |
+
final_text = "".join(generated)
|
| 88 |
+
else:
|
| 89 |
+
final_text = answer
|
| 90 |
+
|
| 91 |
+
# Append assistant message back into msgs
|
| 92 |
+
msgs = msgs + [{"role": "assistant", "content": [final_text]}]
|
| 93 |
+
|
| 94 |
+
# Return final
|
| 95 |
+
yield final_text, msgs, None
|
| 96 |
+
|
| 97 |
+
except Exception as e:
|
| 98 |
+
yield gr.update(), msgs, f"Error: {e}"
|
| 99 |
+
|
| 100 |
+
def clear_state():
|
| 101 |
+
return None, [], None
|
| 102 |
+
|
| 103 |
+
with gr.Blocks(title="MiniCPM-V-4_5 CPU Gradio Demo") as demo:
|
| 104 |
+
gr.Markdown("# MiniCPM-V-4_5 (CPU) Demo")
|
| 105 |
+
gr.Markdown("Upload an image (optional) and ask a question. Multi-turn chat is supported. Running on CPU may be slow.")
|
| 106 |
+
|
| 107 |
+
with gr.Row():
|
| 108 |
+
with gr.Column(scale=1):
|
| 109 |
+
image_in = gr.Image(type="pil", label="Image (optional)")
|
| 110 |
+
user_in = gr.Textbox(label="Your Message", placeholder="Ask a question about the image or general query...", lines=3)
|
| 111 |
+
with gr.Row():
|
| 112 |
+
think_chk = gr.Checkbox(label="Enable Thinking Mode", value=False)
|
| 113 |
+
stream_chk = gr.Checkbox(label="Stream Output", value=False)
|
| 114 |
+
with gr.Row():
|
| 115 |
+
submit_btn = gr.Button("Send", variant="primary")
|
| 116 |
+
clear_btn = gr.Button("Clear")
|
| 117 |
+
|
| 118 |
+
with gr.Column(scale=2):
|
| 119 |
+
chat_out = gr.Chatbot(label="Chat", type="messages", height=450, avatar_images=(None, None))
|
| 120 |
+
status_box = gr.Markdown("", visible=True)
|
| 121 |
+
|
| 122 |
+
# Hidden state: we store the raw MiniCPM messages, not just text pairs
|
| 123 |
+
state_msgs = gr.State([])
|
| 124 |
+
|
| 125 |
+
def on_submit(image, message, enable_thinking, stream, msgs):
|
| 126 |
+
# Kick off streaming generator
|
| 127 |
+
# We'll display only last exchange in Chatbot. Convert msgs to Chatbot-friendly format when yielding.
|
| 128 |
+
# For Chatbot display, we reconstruct from msgs
|
| 129 |
+
def format_for_chatbot(msgs_local):
|
| 130 |
+
chat_pairs = []
|
| 131 |
+
# Collect pairs by scanning msgs in order
|
| 132 |
+
user_tmp = None
|
| 133 |
+
for m in msgs_local:
|
| 134 |
+
if m["role"] == "user":
|
| 135 |
+
# Convert content to displayable string for Chatbot
|
| 136 |
+
parts = []
|
| 137 |
+
for c in m["content"]:
|
| 138 |
+
if isinstance(c, Image.Image):
|
| 139 |
+
parts.append("[Image]")
|
| 140 |
+
else:
|
| 141 |
+
parts.append(str(c))
|
| 142 |
+
user_tmp = " ".join(parts).strip() or "[Image]"
|
| 143 |
+
elif m["role"] == "assistant":
|
| 144 |
+
assistant_text = " ".join([str(x) for x in m["content"]]) if m["content"] else ""
|
| 145 |
+
if user_tmp is None:
|
| 146 |
+
chat_pairs.append((None, assistant_text))
|
| 147 |
+
else:
|
| 148 |
+
chat_pairs.append((user_tmp, assistant_text))
|
| 149 |
+
user_tmp = None
|
| 150 |
+
return chat_pairs
|
| 151 |
+
|
| 152 |
+
gen = predict(image, message, msgs, enable_thinking, stream)
|
| 153 |
+
if stream:
|
| 154 |
+
for partial_text, updated_msgs, err in gen:
|
| 155 |
+
# Build display history from updated_msgs + current partial response
|
| 156 |
+
display_msgs = updated_msgs.copy()
|
| 157 |
+
# Don't duplicate assistant msg until finalized; just show in Chatbot via the last pair
|
| 158 |
+
chat_history = format_for_chatbot(display_msgs)
|
| 159 |
+
if chat_history and isinstance(partial_text, str) and partial_text:
|
| 160 |
+
if chat_history and (not chat_history[-1][1] or chat_history[-1][1] == ""):
|
| 161 |
+
# replace last tuple assistant part
|
| 162 |
+
u, _ = chat_history[-1]
|
| 163 |
+
chat_history[-1] = (u, partial_text)
|
| 164 |
+
else:
|
| 165 |
+
# append live pair
|
| 166 |
+
last_user = None
|
| 167 |
+
for m in reversed(display_msgs):
|
| 168 |
+
if m["role"] == "user":
|
| 169 |
+
parts = []
|
| 170 |
+
for c in m["content"]:
|
| 171 |
+
if isinstance(c, Image.Image):
|
| 172 |
+
parts.append("[Image]")
|
| 173 |
+
else:
|
| 174 |
+
parts.append(str(c))
|
| 175 |
+
last_user = " ".join(parts).strip() or "[Image]"
|
| 176 |
+
break
|
| 177 |
+
chat_history.append((last_user, partial_text))
|
| 178 |
+
status = "" if not err else f"{err}"
|
| 179 |
+
yield chat_history, updated_msgs, status, gr.update(value=None), gr.update(value=None)
|
| 180 |
+
else:
|
| 181 |
+
for final_text, updated_msgs, err in gen:
|
| 182 |
+
chat_history = []
|
| 183 |
+
# Build chat history from updated_msgs
|
| 184 |
+
def format_for_chatbot_final(msgs_local):
|
| 185 |
+
pairs = []
|
| 186 |
+
u_txt = None
|
| 187 |
+
for m in msgs_local:
|
| 188 |
+
if m["role"] == "user":
|
| 189 |
+
parts = []
|
| 190 |
+
for c in m["content"]:
|
| 191 |
+
if isinstance(c, Image.Image):
|
| 192 |
+
parts.append("[Image]")
|
| 193 |
+
else:
|
| 194 |
+
parts.append(str(c))
|
| 195 |
+
u_txt = " ".join(parts).strip() or "[Image]"
|
| 196 |
+
elif m["role"] == "assistant":
|
| 197 |
+
a_txt = " ".join([str(x) for x in m["content"]]) if m["content"] else ""
|
| 198 |
+
if u_txt is None:
|
| 199 |
+
pairs.append((None, a_txt))
|
| 200 |
+
else:
|
| 201 |
+
pairs.append((u_txt, a_txt))
|
| 202 |
+
u_txt = None
|
| 203 |
+
return pairs
|
| 204 |
+
|
| 205 |
+
chat_history = format_for_chatbot_final(updated_msgs)
|
| 206 |
+
status = "" if not err else f"{err}"
|
| 207 |
+
yield chat_history, updated_msgs, status, gr.update(value=None), gr.update(value=None)
|
| 208 |
+
|
| 209 |
+
submit_btn.click(
|
| 210 |
+
on_submit,
|
| 211 |
+
inputs=[image_in, user_in, think_chk, stream_chk, state_msgs],
|
| 212 |
+
outputs=[chat_out, state_msgs, status_box, user_in, image_in]
|
| 213 |
+
)
|
| 214 |
+
|
| 215 |
+
clear_btn.click(
|
| 216 |
+
fn=clear_state,
|
| 217 |
+
inputs=[],
|
| 218 |
+
outputs=[user_in, state_msgs, status_box]
|
| 219 |
+
).then(
|
| 220 |
+
lambda: [],
|
| 221 |
+
inputs=None,
|
| 222 |
+
outputs=chat_out
|
| 223 |
+
)
|
| 224 |
+
|
| 225 |
+
# Preload model on app start (optional; keeps UI responsive on first query)
|
| 226 |
+
demo.load(lambda: "Model loading on CPU... Please wait a moment.", outputs=status_box).then(
|
| 227 |
+
lambda: (load_model() or True) and "Model loaded. Ready!",
|
| 228 |
+
outputs=status_box
|
| 229 |
+
)
|
| 230 |
+
|
| 231 |
+
if __name__ == "__main__":
|
| 232 |
+
# Set server_name="0.0.0.0" to expose externally if needed.
|
| 233 |
+
demo.queue(max_size=8, concurrency_count=1).launch()
|