Aumkeshchy2003's picture
Update app.py
8b77acb verified
import torch
import numpy as np
import gradio as gr
import cv2
import time
import os
from pathlib import Path
from PIL import Image
# Create cache directory for models
os.makedirs("models", exist_ok=True)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")
# Load YOLOv5 Nano model
model_path = Path("models/yolov5n.pt")
if model_path.exists():
print(f"Loading model from cache: {model_path}")
model = torch.hub.load("ultralytics/yolov5", "custom", path=str(model_path), source="local").to(device)
else:
print("Downloading YOLOv5n model and caching...")
model = torch.hub.load("ultralytics/yolov5", "yolov5n", pretrained=True).to(device)
torch.save(model.state_dict(), model_path)
# Optimize model for speed
model.conf = 0.25 # Lower confidence threshold for speed
model.iou = 0.45 # Better IoU threshold
model.classes = None
model.max_det = 100 # Limit maximum detections
if device.type == "cuda":
model.half() # Use FP16 precision
else:
torch.set_num_threads(os.cpu_count())
model.eval()
# Pre-generate colors for bounding boxes
np.random.seed(42)
colors = np.random.randint(0, 255, size=(len(model.names), 3), dtype=np.uint8)
def process_video(video_path):
# Check if video_path is None or empty
if video_path is None or video_path == "":
return None
# Handle the case when Gradio passes a tuple (file, None)
if isinstance(video_path, tuple) and len(video_path) >= 1:
video_path = video_path[0]
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():
return "Error: Could not open video file."
frame_width = int(cap.get(3))
frame_height = int(cap.get(4))
fps = cap.get(cv2.CAP_PROP_FPS)
# Use mp4v codec which is more widely supported
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
output_path = "output_video.mp4"
out = cv2.VideoWriter(output_path, fourcc, fps, (frame_width, frame_height))
# For FPS calculation
frame_count = 0
start_time = time.time()
# Skip frames for faster processing if needed
frame_skip = 0
if device.type != "cuda": # Skip more frames on CPU
frame_skip = 1
frame_idx = 0
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
frame_idx += 1
if frame_skip > 0 and frame_idx % (frame_skip + 1) != 0:
out.write(frame) # Write original frame
continue
# Convert frame for YOLOv5
img = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
# Use smaller inference size for speed
results = model(img, size=384) # Reduced from 640 to 384
detections = results.xyxy[0].cpu().numpy()
# Draw bounding boxes
for *xyxy, conf, cls in detections:
x1, y1, x2, y2 = map(int, xyxy)
class_id = int(cls)
color = colors[class_id].tolist()
cv2.rectangle(frame, (x1, y1), (x2, y2), color, 2, lineType=cv2.LINE_AA)
label = f"{model.names[class_id]} {conf:.2f}"
# Black text
cv2.putText(frame, label, (x1, y1 - 5), cv2.FONT_HERSHEY_SIMPLEX,
0.7, (0, 0, 0), 2, cv2.LINE_AA)
# Update frame count for FPS calculation
frame_count += 1
# Calculate and display FPS every 10 frames
if frame_count % 10 == 0:
elapsed_time = time.time() - start_time
fps_calc = frame_count / elapsed_time if elapsed_time > 0 else 0
# Add FPS counter with black text
cv2.putText(frame, f"FPS: {fps_calc:.2f}", (20, 40),
cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 0), 2, cv2.LINE_AA)
out.write(frame)
cap.release()
out.release()
return output_path
def process_image(image):
if image is None:
return None
img = np.array(image)
# Process with smaller size for speed
results = model(img, size=512)
detections = results.pred[0].cpu().numpy()
for *xyxy, conf, cls in detections:
x1, y1, x2, y2 = map(int, xyxy)
class_id = int(cls)
color = colors[class_id].tolist()
cv2.rectangle(img, (x1, y1), (x2, y2), color, 2, lineType=cv2.LINE_AA)
label = f"{model.names[class_id]} {conf:.2f}"
# Black text
cv2.putText(img, label, (x1, y1 - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 0), 2, cv2.LINE_AA)
return Image.fromarray(img)
css = """
#title {
text-align: center;
color: #2C3E50;
font-size: 2.5rem;
margin: 1.5rem 0;
text-shadow: 1px 1px 2px rgba(0,0,0,0.1);
}
.gradio-container {
background-color: #F5F7FA;
}
.tab-item {
background-color: white;
border-radius: 10px;
padding: 20px;
box-shadow: 0 4px 6px rgba(0,0,0,0.1);
margin: 10px;
}
.button-row {
display: flex;
justify-content: space-around;
margin: 1rem 0;
}
#video-process-btn, #submit-btn {
background-color: #3498DB;
border: none;
}
#clear-btn {
background-color: #E74C3C;
border: none;
}
.output-container {
margin-top: 1.5rem;
border: 2px dashed #3498DB;
border-radius: 10px;
padding: 10px;
}
.footer {
text-align: center;
margin-top: 2rem;
font-size: 0.9rem;
color: #7F8C8D;
}
"""
with gr.Blocks(css=css, title="Video & Image Object Detection by YOLOv5") as demo:
gr.Markdown("""# YOLOv5 Object Detection""", elem_id="title")
with gr.Tabs():
with gr.TabItem("Video Detection", elem_classes="tab-item"):
with gr.Row():
video_input = gr.Video(
label="Upload Video",
interactive=True,
elem_id="video-input"
)
with gr.Row(elem_classes="button-row"):
process_button = gr.Button(
"Process Video",
variant="primary",
elem_id="video-process-btn"
)
with gr.Row(elem_classes="output-container"):
video_output = gr.Video(
label="Processed Video",
elem_id="video-output"
)
process_button.click(
fn=process_video,
inputs=video_input,
outputs=video_output
)
with gr.TabItem("Image Detection", elem_classes="tab-item"):
with gr.Row():
image_input = gr.Image(
type="pil",
label="Upload Image",
interactive=True
)
with gr.Row(elem_classes="button-row"):
clear_button = gr.Button(
"Clear",
variant="secondary",
elem_id="clear-btn"
)
submit_button = gr.Button(
"Detect Objects",
variant="primary",
elem_id="submit-btn"
)
with gr.Row(elem_classes="output-container"):
image_output = gr.Image(
label="Detected Objects",
elem_id="image-output"
)
clear_button.click(
fn=lambda: None,
inputs=None,
outputs=image_output
)
submit_button.click(
fn=process_image,
inputs=image_input,
outputs=image_output
)
gr.Markdown("""
### Powered by YOLOv5.
This application enables seamless object detection using the YOLOv5 model, allowing users to analyze images and videos with high accuracy and efficiency.
""", elem_classes="footer")
if __name__ == "__main__":
demo.launch()