Spaces:
Running
Running
File size: 8,054 Bytes
caff61e 359afbb 679a693 bf9434d 679a693 359afbb 679a693 8b77acb d87db9b 679a693 359afbb d87db9b 679a693 3545274 679a693 98c85aa d82e424 ab07e28 d82e424 a35c6a5 d82e424 8b77acb d82e424 679a693 8b77acb d87db9b 8b77acb d87db9b 8b77acb d87db9b 8b77acb d87db9b 8b77acb d87db9b 8b77acb d82e424 8b77acb d87db9b 8b77acb d87db9b 8b77acb 679a693 d82e424 679a693 bf9434d d87db9b bf9434d d87db9b 679a693 bf9434d 679a693 bf9434d d87db9b bf9434d d87db9b 679a693 bf9434d 679a693 c1a4fa5 ebbb1aa a549deb 18a593e bf9434d ebbb1aa 18a593e a35c6a5 d82e424 ebbb1aa 1052f15 ebbb1aa a549deb ebbb1aa bf9434d d87db9b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 |
import torch
import numpy as np
import gradio as gr
import cv2
import time
import os
from pathlib import Path
from PIL import Image
# Create cache directory for models
os.makedirs("models", exist_ok=True)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")
# Load YOLOv5 Nano model
model_path = Path("models/yolov5n.pt")
if model_path.exists():
print(f"Loading model from cache: {model_path}")
model = torch.hub.load("ultralytics/yolov5", "custom", path=str(model_path), source="local").to(device)
else:
print("Downloading YOLOv5n model and caching...")
model = torch.hub.load("ultralytics/yolov5", "yolov5n", pretrained=True).to(device)
torch.save(model.state_dict(), model_path)
# Optimize model for speed
model.conf = 0.25 # Lower confidence threshold for speed
model.iou = 0.45 # Better IoU threshold
model.classes = None
model.max_det = 100 # Limit maximum detections
if device.type == "cuda":
model.half() # Use FP16 precision
else:
torch.set_num_threads(os.cpu_count())
model.eval()
# Pre-generate colors for bounding boxes
np.random.seed(42)
colors = np.random.randint(0, 255, size=(len(model.names), 3), dtype=np.uint8)
def process_video(video_path):
# Check if video_path is None or empty
if video_path is None or video_path == "":
return None
# Handle the case when Gradio passes a tuple (file, None)
if isinstance(video_path, tuple) and len(video_path) >= 1:
video_path = video_path[0]
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():
return "Error: Could not open video file."
frame_width = int(cap.get(3))
frame_height = int(cap.get(4))
fps = cap.get(cv2.CAP_PROP_FPS)
# Use mp4v codec which is more widely supported
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
output_path = "output_video.mp4"
out = cv2.VideoWriter(output_path, fourcc, fps, (frame_width, frame_height))
# For FPS calculation
frame_count = 0
start_time = time.time()
# Skip frames for faster processing if needed
frame_skip = 0
if device.type != "cuda": # Skip more frames on CPU
frame_skip = 1
frame_idx = 0
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
frame_idx += 1
if frame_skip > 0 and frame_idx % (frame_skip + 1) != 0:
out.write(frame) # Write original frame
continue
# Convert frame for YOLOv5
img = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
# Use smaller inference size for speed
results = model(img, size=384) # Reduced from 640 to 384
detections = results.xyxy[0].cpu().numpy()
# Draw bounding boxes
for *xyxy, conf, cls in detections:
x1, y1, x2, y2 = map(int, xyxy)
class_id = int(cls)
color = colors[class_id].tolist()
cv2.rectangle(frame, (x1, y1), (x2, y2), color, 2, lineType=cv2.LINE_AA)
label = f"{model.names[class_id]} {conf:.2f}"
# Black text
cv2.putText(frame, label, (x1, y1 - 5), cv2.FONT_HERSHEY_SIMPLEX,
0.7, (0, 0, 0), 2, cv2.LINE_AA)
# Update frame count for FPS calculation
frame_count += 1
# Calculate and display FPS every 10 frames
if frame_count % 10 == 0:
elapsed_time = time.time() - start_time
fps_calc = frame_count / elapsed_time if elapsed_time > 0 else 0
# Add FPS counter with black text
cv2.putText(frame, f"FPS: {fps_calc:.2f}", (20, 40),
cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 0), 2, cv2.LINE_AA)
out.write(frame)
cap.release()
out.release()
return output_path
def process_image(image):
if image is None:
return None
img = np.array(image)
# Process with smaller size for speed
results = model(img, size=512)
detections = results.pred[0].cpu().numpy()
for *xyxy, conf, cls in detections:
x1, y1, x2, y2 = map(int, xyxy)
class_id = int(cls)
color = colors[class_id].tolist()
cv2.rectangle(img, (x1, y1), (x2, y2), color, 2, lineType=cv2.LINE_AA)
label = f"{model.names[class_id]} {conf:.2f}"
# Black text
cv2.putText(img, label, (x1, y1 - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 0), 2, cv2.LINE_AA)
return Image.fromarray(img)
css = """
#title {
text-align: center;
color: #2C3E50;
font-size: 2.5rem;
margin: 1.5rem 0;
text-shadow: 1px 1px 2px rgba(0,0,0,0.1);
}
.gradio-container {
background-color: #F5F7FA;
}
.tab-item {
background-color: white;
border-radius: 10px;
padding: 20px;
box-shadow: 0 4px 6px rgba(0,0,0,0.1);
margin: 10px;
}
.button-row {
display: flex;
justify-content: space-around;
margin: 1rem 0;
}
#video-process-btn, #submit-btn {
background-color: #3498DB;
border: none;
}
#clear-btn {
background-color: #E74C3C;
border: none;
}
.output-container {
margin-top: 1.5rem;
border: 2px dashed #3498DB;
border-radius: 10px;
padding: 10px;
}
.footer {
text-align: center;
margin-top: 2rem;
font-size: 0.9rem;
color: #7F8C8D;
}
"""
with gr.Blocks(css=css, title="Video & Image Object Detection by YOLOv5") as demo:
gr.Markdown("""# YOLOv5 Object Detection""", elem_id="title")
with gr.Tabs():
with gr.TabItem("Video Detection", elem_classes="tab-item"):
with gr.Row():
video_input = gr.Video(
label="Upload Video",
interactive=True,
elem_id="video-input"
)
with gr.Row(elem_classes="button-row"):
process_button = gr.Button(
"Process Video",
variant="primary",
elem_id="video-process-btn"
)
with gr.Row(elem_classes="output-container"):
video_output = gr.Video(
label="Processed Video",
elem_id="video-output"
)
process_button.click(
fn=process_video,
inputs=video_input,
outputs=video_output
)
with gr.TabItem("Image Detection", elem_classes="tab-item"):
with gr.Row():
image_input = gr.Image(
type="pil",
label="Upload Image",
interactive=True
)
with gr.Row(elem_classes="button-row"):
clear_button = gr.Button(
"Clear",
variant="secondary",
elem_id="clear-btn"
)
submit_button = gr.Button(
"Detect Objects",
variant="primary",
elem_id="submit-btn"
)
with gr.Row(elem_classes="output-container"):
image_output = gr.Image(
label="Detected Objects",
elem_id="image-output"
)
clear_button.click(
fn=lambda: None,
inputs=None,
outputs=image_output
)
submit_button.click(
fn=process_image,
inputs=image_input,
outputs=image_output
)
gr.Markdown("""
### Powered by YOLOv5.
This application enables seamless object detection using the YOLOv5 model, allowing users to analyze images and videos with high accuracy and efficiency.
""", elem_classes="footer")
if __name__ == "__main__":
demo.launch() |