import torch import numpy as np import gradio as gr import cv2 import time import os from pathlib import Path from PIL import Image # Create cache directory for models os.makedirs("models", exist_ok=True) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") print(f"Using device: {device}") # Load YOLOv5 Nano model model_path = Path("models/yolov5n.pt") if model_path.exists(): print(f"Loading model from cache: {model_path}") model = torch.hub.load("ultralytics/yolov5", "custom", path=str(model_path), source="local").to(device) else: print("Downloading YOLOv5n model and caching...") model = torch.hub.load("ultralytics/yolov5", "yolov5n", pretrained=True).to(device) torch.save(model.state_dict(), model_path) # Optimize model for speed model.conf = 0.25 # Lower confidence threshold for speed model.iou = 0.45 # Better IoU threshold model.classes = None model.max_det = 100 # Limit maximum detections if device.type == "cuda": model.half() # Use FP16 precision else: torch.set_num_threads(os.cpu_count()) model.eval() # Pre-generate colors for bounding boxes np.random.seed(42) colors = np.random.randint(0, 255, size=(len(model.names), 3), dtype=np.uint8) def process_video(video_path): # Check if video_path is None or empty if video_path is None or video_path == "": return None # Handle the case when Gradio passes a tuple (file, None) if isinstance(video_path, tuple) and len(video_path) >= 1: video_path = video_path[0] cap = cv2.VideoCapture(video_path) if not cap.isOpened(): return "Error: Could not open video file." frame_width = int(cap.get(3)) frame_height = int(cap.get(4)) fps = cap.get(cv2.CAP_PROP_FPS) # Use mp4v codec which is more widely supported fourcc = cv2.VideoWriter_fourcc(*'mp4v') output_path = "output_video.mp4" out = cv2.VideoWriter(output_path, fourcc, fps, (frame_width, frame_height)) # For FPS calculation frame_count = 0 start_time = time.time() # Skip frames for faster processing if needed frame_skip = 0 if device.type != "cuda": # Skip more frames on CPU frame_skip = 1 frame_idx = 0 while cap.isOpened(): ret, frame = cap.read() if not ret: break frame_idx += 1 if frame_skip > 0 and frame_idx % (frame_skip + 1) != 0: out.write(frame) # Write original frame continue # Convert frame for YOLOv5 img = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) # Use smaller inference size for speed results = model(img, size=384) # Reduced from 640 to 384 detections = results.xyxy[0].cpu().numpy() # Draw bounding boxes for *xyxy, conf, cls in detections: x1, y1, x2, y2 = map(int, xyxy) class_id = int(cls) color = colors[class_id].tolist() cv2.rectangle(frame, (x1, y1), (x2, y2), color, 2, lineType=cv2.LINE_AA) label = f"{model.names[class_id]} {conf:.2f}" # Black text cv2.putText(frame, label, (x1, y1 - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 0), 2, cv2.LINE_AA) # Update frame count for FPS calculation frame_count += 1 # Calculate and display FPS every 10 frames if frame_count % 10 == 0: elapsed_time = time.time() - start_time fps_calc = frame_count / elapsed_time if elapsed_time > 0 else 0 # Add FPS counter with black text cv2.putText(frame, f"FPS: {fps_calc:.2f}", (20, 40), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 0), 2, cv2.LINE_AA) out.write(frame) cap.release() out.release() return output_path def process_image(image): if image is None: return None img = np.array(image) # Process with smaller size for speed results = model(img, size=512) detections = results.pred[0].cpu().numpy() for *xyxy, conf, cls in detections: x1, y1, x2, y2 = map(int, xyxy) class_id = int(cls) color = colors[class_id].tolist() cv2.rectangle(img, (x1, y1), (x2, y2), color, 2, lineType=cv2.LINE_AA) label = f"{model.names[class_id]} {conf:.2f}" # Black text cv2.putText(img, label, (x1, y1 - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 0), 2, cv2.LINE_AA) return Image.fromarray(img) css = """ #title { text-align: center; color: #2C3E50; font-size: 2.5rem; margin: 1.5rem 0; text-shadow: 1px 1px 2px rgba(0,0,0,0.1); } .gradio-container { background-color: #F5F7FA; } .tab-item { background-color: white; border-radius: 10px; padding: 20px; box-shadow: 0 4px 6px rgba(0,0,0,0.1); margin: 10px; } .button-row { display: flex; justify-content: space-around; margin: 1rem 0; } #video-process-btn, #submit-btn { background-color: #3498DB; border: none; } #clear-btn { background-color: #E74C3C; border: none; } .output-container { margin-top: 1.5rem; border: 2px dashed #3498DB; border-radius: 10px; padding: 10px; } .footer { text-align: center; margin-top: 2rem; font-size: 0.9rem; color: #7F8C8D; } """ with gr.Blocks(css=css, title="Video & Image Object Detection by YOLOv5") as demo: gr.Markdown("""# YOLOv5 Object Detection""", elem_id="title") with gr.Tabs(): with gr.TabItem("Video Detection", elem_classes="tab-item"): with gr.Row(): video_input = gr.Video( label="Upload Video", interactive=True, elem_id="video-input" ) with gr.Row(elem_classes="button-row"): process_button = gr.Button( "Process Video", variant="primary", elem_id="video-process-btn" ) with gr.Row(elem_classes="output-container"): video_output = gr.Video( label="Processed Video", elem_id="video-output" ) process_button.click( fn=process_video, inputs=video_input, outputs=video_output ) with gr.TabItem("Image Detection", elem_classes="tab-item"): with gr.Row(): image_input = gr.Image( type="pil", label="Upload Image", interactive=True ) with gr.Row(elem_classes="button-row"): clear_button = gr.Button( "Clear", variant="secondary", elem_id="clear-btn" ) submit_button = gr.Button( "Detect Objects", variant="primary", elem_id="submit-btn" ) with gr.Row(elem_classes="output-container"): image_output = gr.Image( label="Detected Objects", elem_id="image-output" ) clear_button.click( fn=lambda: None, inputs=None, outputs=image_output ) submit_button.click( fn=process_image, inputs=image_input, outputs=image_output ) gr.Markdown(""" ### Powered by YOLOv5. This application enables seamless object detection using the YOLOv5 model, allowing users to analyze images and videos with high accuracy and efficiency. """, elem_classes="footer") if __name__ == "__main__": demo.launch()