Spaces:
Sleeping
Sleeping
File size: 12,789 Bytes
c49bb9e c0c29a6 ba9c37a 9e90db6 c49bb9e c0c29a6 ba9c37a 9e90db6 c49bb9e ba9c37a 9e90db6 c49bb9e ba9c37a 9e90db6 bc70dd9 a31df32 c0c29a6 a31df32 c0c29a6 a31df32 750248d 81fb39e c49bb9e ba9c37a a31df32 0527131 a31df32 ba9c37a a31df32 c0c29a6 ba9c37a c0c29a6 ba9c37a c0c29a6 81fb39e ba9c37a 81fb39e ba9c37a 9e90db6 ba9c37a 9e90db6 bc70dd9 9e90db6 bc70dd9 9e90db6 ba9c37a 9e90db6 c0c29a6 c49bb9e 9e90db6 c0c29a6 9e90db6 c0c29a6 9e90db6 c0c29a6 9e90db6 a31df32 9e90db6 bc70dd9 9e90db6 a31df32 9e90db6 81fb39e 9e90db6 81fb39e 9e90db6 750248d 9e90db6 750248d 81fb39e 9e90db6 81fb39e 9e90db6 750248d 9e90db6 750248d 9e90db6 750248d 9e90db6 750248d 9e90db6 750248d 9e90db6 750248d 9e90db6 750248d 9e90db6 750248d 9e90db6 ba9c37a 81fb39e 9e90db6 750248d 9e90db6 750248d 9e90db6 81fb39e 9e90db6 750248d 9e90db6 750248d 81fb39e c0c29a6 bc70dd9 81fb39e 9e90db6 ba9c37a 9e90db6 ba9c37a 81fb39e 9e90db6 81fb39e bc70dd9 81fb39e 9e90db6 ba9c37a 9e90db6 bc70dd9 81fb39e 9e90db6 c0c29a6 9e90db6 c49bb9e 9e90db6 c49bb9e c0c29a6 bc70dd9 750248d 9e90db6 c0c29a6 bc70dd9 81fb39e 9e90db6 c0c29a6 81fb39e 9e90db6 c0c29a6 81fb39e c0c29a6 9e90db6 c49bb9e a31df32 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 |
import gradio as gr
import torch
import torch.nn as nn
from transformers import AutoTokenizer, AutoModelForCausalLM, CLIPModel, CLIPProcessor
from sentence_transformers import SentenceTransformer
from huggingface_hub import hf_hub_download
from PIL import Image
import torch.nn.functional as F
import json
import numpy as np
import faiss
# Model repositories
BIOMEDCLIP_REPO = "AssanaliAidarkhan/Biomedclip"
QWEN_RAG_REPO = "AssanaliAidarkhan/qwen-medical-rag"
# Global variables
biomedclip_model = None
biomedclip_processor = None
biomedclip_id2label = {}
qwen_model = None
qwen_tokenizer = None
embedding_model = None
medical_knowledge = []
faiss_index = None
class CLIPClassifier(nn.Module):
def __init__(self, clip_model, num_classes):
super(CLIPClassifier, self).__init__()
self.clip_model = clip_model
self.classifier = nn.Linear(clip_model.config.projection_dim, num_classes)
def forward(self, **inputs):
outputs = self.clip_model.get_image_features(**inputs)
logits = self.classifier(outputs)
return {'logits': logits}
def load_biomedclip():
"""Load BiomedCLIP (we know this works)"""
global biomedclip_model, biomedclip_processor, biomedclip_id2label
try:
model_path = hf_hub_download(repo_id=BIOMEDCLIP_REPO, filename="pytorch_model.bin")
checkpoint = torch.load(model_path, map_location='cpu')
num_classes = checkpoint['num_classes']
biomedclip_id2label = checkpoint['id2label']
model_name = checkpoint.get('model_name', 'openai/clip-vit-base-patch16')
biomedclip_processor = CLIPProcessor.from_pretrained(model_name)
clip_model = CLIPModel.from_pretrained(model_name)
biomedclip_model = CLIPClassifier(clip_model, num_classes)
biomedclip_model.load_state_dict(checkpoint['model_state_dict'])
biomedclip_model.eval()
print("✅ BiomedCLIP loaded!")
return True
except Exception as e:
print(f"❌ BiomedCLIP error: {e}")
return False
def load_rag_system():
"""Load complete RAG system"""
global qwen_model, qwen_tokenizer, embedding_model, medical_knowledge, faiss_index
try:
print("🔄 Loading RAG system...")
# 1. Load medical knowledge base
try:
knowledge_path = hf_hub_download(repo_id=QWEN_RAG_REPO, filename="medical_knowledge.json")
with open(knowledge_path, 'r', encoding='utf-8') as f:
medical_knowledge = json.load(f)
print(f"✅ Knowledge base: {len(medical_knowledge)} documents")
except Exception as e:
print(f"⚠️ Knowledge loading error: {e}, using fallback")
# Fallback knowledge base
medical_knowledge = [
{
"id": "doc1",
"title": "Частичное повреждения передней крестообразной связки",
"content": "Признаки частичного повреждения передней крестообразной связки: утолщение, повышенный сигнал по Т2, частичная дезорганизация волокон, связка прослеживается по ходу",
"category": "Partial ACL injury",
"advice": "Recommend conservative treatment, physical therapy, follow-up MRI in 6-8 weeks"
},
{
"id": "doc2",
"title": "Полный разрыв передней крестообразной связки",
"content": "Признаки полного разрыва передней крестообразной связки: волокна не прослеживаются по ходу, определяется зона повышенного сигнала в проекции связки, гемартроз",
"category": "Complete ACL tear",
"advice": "Urgent orthopedic consultation, likely requires ACL reconstruction surgery"
}
]
# 2. Load embedding model
print("🔄 Loading embeddings...")
embedding_model = SentenceTransformer('all-MiniLM-L6-v2')
# 3. Create embeddings and FAISS index
print("🔄 Creating FAISS index...")
text_contents = []
for doc in medical_knowledge:
text = f"{doc.get('title', '')} {doc.get('content', '')} {doc.get('advice', '')}"
text_contents.append(text)
embeddings = embedding_model.encode(text_contents, convert_to_numpy=True)
# Create FAISS index
dimension = embeddings.shape[1]
faiss_index = faiss.IndexFlatIP(dimension)
faiss.normalize_L2(embeddings)
faiss_index.add(embeddings)
print(f"✅ FAISS index created with {faiss_index.ntotal} documents")
# 4. Load Qwen
print("🔄 Loading Qwen...")
qwen_tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen1.5-0.5B-Chat", trust_remote_code=True)
qwen_model = AutoModelForCausalLM.from_pretrained(
"Qwen/Qwen1.5-0.5B-Chat",
torch_dtype=torch.float32,
trust_remote_code=True
)
print("✅ RAG system loaded completely!")
return True
except Exception as e:
print(f"❌ RAG loading error: {e}")
import traceback
print(traceback.format_exc())
return False
def retrieve_relevant_knowledge(classification_result):
"""Retrieve relevant medical documents"""
global embedding_model, medical_knowledge, faiss_index
if faiss_index is None:
return [], "No knowledge base available"
try:
# Create query for retrieval
query = f"Medical diagnosis {classification_result} treatment recommendations clinical advice"
# Get query embedding
query_embedding = embedding_model.encode([query], convert_to_numpy=True)
faiss.normalize_L2(query_embedding)
# Search FAISS index
scores, indices = faiss_index.search(query_embedding, 2) # Top 2 documents
# Get relevant documents
retrieved_docs = []
context_text = ""
for score, idx in zip(scores[0], indices[0]):
if idx != -1 and idx < len(medical_knowledge):
doc = medical_knowledge[idx]
retrieved_docs.append((doc, float(score)))
context_text += f"Medical Knowledge: {doc.get('content', '')}\n"
context_text += f"Clinical Advice: {doc.get('advice', '')}\n"
context_text += f"Category: {doc.get('category', '')}\n\n"
return retrieved_docs, context_text
except Exception as e:
print(f"❌ Retrieval error: {e}")
return [], f"Retrieval error: {e}"
def generate_qwen_advice(classification_result, retrieved_context):
"""Generate medical advice using Qwen with RAG context"""
global qwen_model, qwen_tokenizer
if qwen_model is None:
return "❌ Qwen model not loaded"
try:
print("🔄 Generating Qwen advice...")
# Create comprehensive prompt
prompt = f"""You are a medical AI assistant. Based on the MRI classification and medical knowledge provided, give clinical recommendations.
MRI Classification: {classification_result}
Retrieved Medical Knowledge:
{retrieved_context}
Provide specific clinical recommendations including treatment options and follow-up care:"""
print(f"📝 Prompt length: {len(prompt)} characters")
# Tokenize
inputs = qwen_tokenizer(prompt, return_tensors="pt", max_length=512, truncation=True)
print(f"🔧 Input tokens: {inputs.input_ids.shape}")
# Generate
with torch.no_grad():
outputs = qwen_model.generate(
inputs.input_ids,
max_new_tokens=120,
temperature=0.7,
do_sample=True,
pad_token_id=qwen_tokenizer.eos_token_id,
eos_token_id=qwen_tokenizer.eos_token_id
)
# Decode only the new tokens
generated_tokens = outputs[0][inputs.input_ids.shape[1]:]
generated_text = qwen_tokenizer.decode(generated_tokens, skip_special_tokens=True).strip()
print(f"✅ Generated: {generated_text[:100]}...")
if len(generated_text) < 10:
return "No specific recommendations generated. Consult medical professional."
return generated_text
except Exception as e:
print(f"❌ Qwen generation error: {e}")
import traceback
print(traceback.format_exc())
return f"Generation error: {e}"
def complete_analysis(image):
"""Complete pipeline with RAG"""
if image is None:
return "❌ Please upload an MRI scan", ""
# Step 1: Classification
try:
if biomedclip_model is None:
return "❌ BiomedCLIP not loaded", ""
if image.mode != 'RGB':
image = image.convert('RGB')
inputs = biomedclip_processor(images=image, return_tensors="pt")
with torch.no_grad():
outputs = biomedclip_model(**inputs)
logits = outputs['logits']
probabilities = F.softmax(logits, dim=1)
top_prob, top_idx = torch.max(probabilities, 1)
class_idx = top_idx.item()
if class_idx in biomedclip_id2label:
class_name = biomedclip_id2label[class_idx]
elif str(class_idx) in biomedclip_id2label:
class_name = biomedclip_id2label[str(class_idx)]
else:
class_name = f"Class_{class_idx}"
confidence = top_prob.item() * 100
classification_result = f"{class_name} ({confidence:.1f}% confidence)"
print(f"✅ Classification: {classification_result}")
except Exception as e:
return f"❌ Classification error: {e}", ""
# Step 2: RAG retrieval
retrieved_docs, context = retrieve_relevant_knowledge(classification_result)
# Step 3: Qwen generation
qwen_advice = generate_qwen_advice(classification_result, context)
# Format outputs
classification_text = f"""
# 🔬 **MRI Classification**
## 🎯 **Diagnosis:**
**{class_name}**
## 📊 **Confidence:**
**{confidence:.1f}%**
"""
advice_text = f"""
# 🏥 **AI-Generated Medical Recommendations**
## 🤖 **Qwen Analysis:**
{qwen_advice}
## 📚 **Retrieved Medical Knowledge:**
{context if context else "No relevant knowledge retrieved"}
## 📋 **Retrieved Documents:**
{len(retrieved_docs)} documents found and used for advice generation
---
⚠️ **Disclaimer:** For educational purposes only. Always consult medical professionals.
"""
return classification_text, advice_text
# Load models
print("🚀 Loading complete pipeline...")
biomedclip_loaded = load_biomedclip()
rag_loaded = load_rag_system()
# Create interface
with gr.Blocks(title="Medical RAG Pipeline") as app:
gr.Markdown("# 🏥 Medical AI RAG Pipeline")
gr.Markdown("**BiomedCLIP** → **RAG Retrieval** → **Qwen Generation**")
status = f"BiomedCLIP: {'✅' if biomedclip_loaded else '❌'} | RAG: {'✅' if rag_loaded else '❌'}"
gr.Markdown(f"**Status:** {status}")
with gr.Row():
with gr.Column():
image_input = gr.Image(type="pil", label="📸 Upload MRI Scan")
analyze_btn = gr.Button("🔬 Complete RAG Analysis", variant="primary")
with gr.Column():
classification_output = gr.Markdown(label="🔬 Classification")
advice_output = gr.Markdown(label="🏥 RAG-Generated Advice")
analyze_btn.click(
fn=complete_analysis,
inputs=image_input,
outputs=[classification_output, advice_output]
)
gr.Markdown("""
### 🔄 **RAG Pipeline Process:**
1. **Image Classification** - BiomedCLIP analyzes MRI
2. **Knowledge Retrieval** - Find relevant medical documents
3. **Context Generation** - Qwen uses retrieved knowledge
4. **Advice Output** - AI-generated clinical recommendations
### 📚 **Knowledge Base:**
- ACL injury types and symptoms
- Treatment recommendations
- Clinical guidelines
- Follow-up protocols
""")
if __name__ == "__main__":
app.launch() |