Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,235 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
from huggingface_hub import hf_hub_download
|
| 4 |
+
from PIL import Image
|
| 5 |
+
import numpy as np
|
| 6 |
+
import traceback
|
| 7 |
+
|
| 8 |
+
# Your model configuration
|
| 9 |
+
MODEL_REPO = "AssanaliAidarkhan/Biomedclip" # Your uploaded model
|
| 10 |
+
MODEL_FILENAME = "pytorch_model.bin" # The .pt file you uploaded
|
| 11 |
+
|
| 12 |
+
# Global variables
|
| 13 |
+
model = None
|
| 14 |
+
|
| 15 |
+
def load_model():
|
| 16 |
+
"""Load the BiodemCLIP model from your uploaded .pt file"""
|
| 17 |
+
global model
|
| 18 |
+
|
| 19 |
+
try:
|
| 20 |
+
print(f"Downloading model from: {MODEL_REPO}")
|
| 21 |
+
|
| 22 |
+
# Download your model file
|
| 23 |
+
model_path = hf_hub_download(
|
| 24 |
+
repo_id=MODEL_REPO,
|
| 25 |
+
filename=MODEL_FILENAME,
|
| 26 |
+
cache_dir="./model_cache"
|
| 27 |
+
)
|
| 28 |
+
|
| 29 |
+
print(f"Model downloaded to: {model_path}")
|
| 30 |
+
|
| 31 |
+
# Load the model
|
| 32 |
+
# Note: Adjust this based on how your model was saved
|
| 33 |
+
model = torch.load(model_path, map_location='cpu')
|
| 34 |
+
|
| 35 |
+
# If your model was saved as a state dict, you might need:
|
| 36 |
+
# model = YourModelClass() # Initialize your model architecture
|
| 37 |
+
# model.load_state_dict(torch.load(model_path, map_location='cpu'))
|
| 38 |
+
|
| 39 |
+
# Set to evaluation mode
|
| 40 |
+
if hasattr(model, 'eval'):
|
| 41 |
+
model.eval()
|
| 42 |
+
|
| 43 |
+
print("β Model loaded successfully!")
|
| 44 |
+
return True
|
| 45 |
+
|
| 46 |
+
except Exception as e:
|
| 47 |
+
print(f"Error loading model: {e}")
|
| 48 |
+
print(traceback.format_exc())
|
| 49 |
+
return False
|
| 50 |
+
|
| 51 |
+
def predict(image, text_query):
|
| 52 |
+
"""Make prediction with your model"""
|
| 53 |
+
global model
|
| 54 |
+
|
| 55 |
+
if model is None:
|
| 56 |
+
return "β Model not loaded! Please wait for initialization."
|
| 57 |
+
|
| 58 |
+
if image is None:
|
| 59 |
+
return "β Please upload an image."
|
| 60 |
+
|
| 61 |
+
if not text_query or text_query.strip() == "":
|
| 62 |
+
return "β Please enter a text query."
|
| 63 |
+
|
| 64 |
+
try:
|
| 65 |
+
# Convert PIL image to tensor
|
| 66 |
+
if isinstance(image, Image.Image):
|
| 67 |
+
# Convert to RGB if not already
|
| 68 |
+
image = image.convert('RGB')
|
| 69 |
+
|
| 70 |
+
# Convert to numpy array and then tensor
|
| 71 |
+
image_array = np.array(image)
|
| 72 |
+
|
| 73 |
+
# Normalize pixel values to [0, 1]
|
| 74 |
+
image_tensor = torch.from_numpy(image_array).float() / 255.0
|
| 75 |
+
|
| 76 |
+
# Rearrange dimensions from HWC to CHW
|
| 77 |
+
image_tensor = image_tensor.permute(2, 0, 1).unsqueeze(0) # Add batch dimension
|
| 78 |
+
|
| 79 |
+
# Process text (this is a basic tokenization - adjust based on your model)
|
| 80 |
+
# You might need to use a specific tokenizer here
|
| 81 |
+
text_tokens = text_query.lower().split() # Basic tokenization
|
| 82 |
+
|
| 83 |
+
# Run inference
|
| 84 |
+
with torch.no_grad():
|
| 85 |
+
try:
|
| 86 |
+
# This depends on your model's forward method
|
| 87 |
+
# You'll need to adjust this based on how your model expects inputs
|
| 88 |
+
|
| 89 |
+
# Example approaches (try these and see which works):
|
| 90 |
+
|
| 91 |
+
# Option 1: If your model has a forward method that takes image and text
|
| 92 |
+
if hasattr(model, 'forward'):
|
| 93 |
+
output = model(image_tensor, text_query)
|
| 94 |
+
|
| 95 |
+
# Option 2: If your model has separate encode methods
|
| 96 |
+
elif hasattr(model, 'encode_image') and hasattr(model, 'encode_text'):
|
| 97 |
+
image_features = model.encode_image(image_tensor)
|
| 98 |
+
text_features = model.encode_text(text_query)
|
| 99 |
+
|
| 100 |
+
# Calculate similarity
|
| 101 |
+
similarity = torch.cosine_similarity(image_features, text_features, dim=-1)
|
| 102 |
+
output = similarity
|
| 103 |
+
|
| 104 |
+
# Option 3: If it's a different architecture
|
| 105 |
+
else:
|
| 106 |
+
# You might need to call your model differently
|
| 107 |
+
# For example: output = model.predict(image_tensor, text_query)
|
| 108 |
+
output = model(image_tensor) # Adjust this line based on your model
|
| 109 |
+
|
| 110 |
+
# Process the output
|
| 111 |
+
if torch.is_tensor(output):
|
| 112 |
+
if output.numel() == 1: # Single value (like similarity score)
|
| 113 |
+
score = output.item()
|
| 114 |
+
else: # Multiple values
|
| 115 |
+
score = torch.mean(output).item() # Take mean as similarity
|
| 116 |
+
else:
|
| 117 |
+
score = float(output) if isinstance(output, (int, float)) else 0.5
|
| 118 |
+
|
| 119 |
+
result = f"""
|
| 120 |
+
π― **Similarity Score:** {score:.4f}
|
| 121 |
+
|
| 122 |
+
π **Query:** {text_query}
|
| 123 |
+
|
| 124 |
+
πΌοΈ **Image Shape:** {image_array.shape}
|
| 125 |
+
|
| 126 |
+
π‘ **Interpretation:**
|
| 127 |
+
{interpret_similarity(score)}
|
| 128 |
+
|
| 129 |
+
π§ **Model Info:** Loaded from {MODEL_REPO}
|
| 130 |
+
"""
|
| 131 |
+
|
| 132 |
+
return result
|
| 133 |
+
|
| 134 |
+
except Exception as model_error:
|
| 135 |
+
return f"""
|
| 136 |
+
β **Model Inference Error:**
|
| 137 |
+
{str(model_error)}
|
| 138 |
+
|
| 139 |
+
π§ **Debug Info:**
|
| 140 |
+
- Image shape: {image_array.shape}
|
| 141 |
+
- Text query: "{text_query}"
|
| 142 |
+
- Model type: {type(model)}
|
| 143 |
+
|
| 144 |
+
π‘ **Note:** You may need to adjust the inference code based on your specific model architecture.
|
| 145 |
+
"""
|
| 146 |
+
|
| 147 |
+
except Exception as e:
|
| 148 |
+
error_msg = f"β Error during prediction: {str(e)}"
|
| 149 |
+
print(traceback.format_exc())
|
| 150 |
+
return error_msg
|
| 151 |
+
|
| 152 |
+
def interpret_similarity(score):
|
| 153 |
+
"""Interpret the similarity score"""
|
| 154 |
+
if score >= 0.8:
|
| 155 |
+
return "π’ Very high similarity - Strong match!"
|
| 156 |
+
elif score >= 0.6:
|
| 157 |
+
return "π‘ Good similarity - Reasonable match"
|
| 158 |
+
elif score >= 0.4:
|
| 159 |
+
return "π Moderate similarity - Some relevance"
|
| 160 |
+
elif score >= 0.2:
|
| 161 |
+
return "π΄ Low similarity - Limited relevance"
|
| 162 |
+
else:
|
| 163 |
+
return "β« Very low similarity - Poor match"
|
| 164 |
+
|
| 165 |
+
# Load model on startup
|
| 166 |
+
print("Initializing BiodemCLIP model...")
|
| 167 |
+
model_loaded = load_model()
|
| 168 |
+
|
| 169 |
+
# Create Gradio interface
|
| 170 |
+
with gr.Blocks(title="BiodemCLIP Demo", theme=gr.themes.Soft()) as demo:
|
| 171 |
+
gr.Markdown("""
|
| 172 |
+
# 𧬠BiodemCLIP Model Demo
|
| 173 |
+
|
| 174 |
+
Upload a biomedical image and enter a text description to see how well they match!
|
| 175 |
+
|
| 176 |
+
**Model:** AssanaliAidarkhan/Biomedclip
|
| 177 |
+
""")
|
| 178 |
+
|
| 179 |
+
if not model_loaded:
|
| 180 |
+
gr.Markdown("β οΈ **Warning: Model failed to load. Check the logs for details.**")
|
| 181 |
+
else:
|
| 182 |
+
gr.Markdown("β
**Model loaded successfully!**")
|
| 183 |
+
|
| 184 |
+
with gr.Row():
|
| 185 |
+
with gr.Column(scale=1):
|
| 186 |
+
image_input = gr.Image(
|
| 187 |
+
type="pil",
|
| 188 |
+
label="πΈ Upload Biomedical Image",
|
| 189 |
+
height=400
|
| 190 |
+
)
|
| 191 |
+
|
| 192 |
+
text_input = gr.Textbox(
|
| 193 |
+
label="π Enter Text Query",
|
| 194 |
+
placeholder="e.g., 'chest X-ray showing pneumonia', 'normal tissue sample', etc.",
|
| 195 |
+
lines=3
|
| 196 |
+
)
|
| 197 |
+
|
| 198 |
+
submit_btn = gr.Button("π Analyze", variant="primary", size="lg")
|
| 199 |
+
clear_btn = gr.Button("ποΈ Clear", variant="secondary")
|
| 200 |
+
|
| 201 |
+
with gr.Column(scale=1):
|
| 202 |
+
output = gr.Markdown(label="π Results")
|
| 203 |
+
|
| 204 |
+
# Event handlers
|
| 205 |
+
submit_btn.click(
|
| 206 |
+
fn=predict,
|
| 207 |
+
inputs=[image_input, text_input],
|
| 208 |
+
outputs=output
|
| 209 |
+
)
|
| 210 |
+
|
| 211 |
+
clear_btn.click(
|
| 212 |
+
fn=lambda: [None, "", ""],
|
| 213 |
+
inputs=[],
|
| 214 |
+
outputs=[image_input, text_input, output]
|
| 215 |
+
)
|
| 216 |
+
|
| 217 |
+
gr.Markdown("""
|
| 218 |
+
### π Instructions:
|
| 219 |
+
1. Upload a biomedical image (X-ray, MRI, microscopy, etc.)
|
| 220 |
+
2. Enter a descriptive text query
|
| 221 |
+
3. Click "Analyze" to get the similarity score
|
| 222 |
+
|
| 223 |
+
### βΉοΈ About:
|
| 224 |
+
This model analyzes the similarity between biomedical images and text descriptions.
|
| 225 |
+
Higher scores indicate better matches between the image and text.
|
| 226 |
+
|
| 227 |
+
### π§ Technical Notes:
|
| 228 |
+
- Model loaded from Hugging Face Hub
|
| 229 |
+
- Runs on CPU (may be slower for large images)
|
| 230 |
+
- Custom .pt model loading
|
| 231 |
+
""")
|
| 232 |
+
|
| 233 |
+
# Launch the app
|
| 234 |
+
if __name__ == "__main__":
|
| 235 |
+
demo.launch()
|