Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -6,11 +6,9 @@ from huggingface_hub import hf_hub_download
|
|
| 6 |
from PIL import Image
|
| 7 |
import torch.nn.functional as F
|
| 8 |
import json
|
| 9 |
-
import traceback
|
| 10 |
|
| 11 |
# Model repositories
|
| 12 |
BIOMEDCLIP_REPO = "AssanaliAidarkhan/Biomedclip"
|
| 13 |
-
QWEN_RAG_REPO = "AssanaliAidarkhan/qwen-medical-rag"
|
| 14 |
|
| 15 |
# Global variables
|
| 16 |
biomedclip_model = None
|
|
@@ -18,7 +16,6 @@ biomedclip_processor = None
|
|
| 18 |
biomedclip_id2label = {}
|
| 19 |
qwen_model = None
|
| 20 |
qwen_tokenizer = None
|
| 21 |
-
medical_knowledge = []
|
| 22 |
|
| 23 |
class CLIPClassifier(nn.Module):
|
| 24 |
def __init__(self, clip_model, num_classes):
|
|
@@ -32,12 +29,10 @@ class CLIPClassifier(nn.Module):
|
|
| 32 |
return {'logits': logits}
|
| 33 |
|
| 34 |
def load_biomedclip():
|
| 35 |
-
"""Load BiomedCLIP
|
| 36 |
global biomedclip_model, biomedclip_processor, biomedclip_id2label
|
| 37 |
|
| 38 |
try:
|
| 39 |
-
print("π Loading BiomedCLIP...")
|
| 40 |
-
|
| 41 |
model_path = hf_hub_download(repo_id=BIOMEDCLIP_REPO, filename="pytorch_model.bin")
|
| 42 |
checkpoint = torch.load(model_path, map_location='cpu')
|
| 43 |
|
|
@@ -54,133 +49,42 @@ def load_biomedclip():
|
|
| 54 |
|
| 55 |
print("β
BiomedCLIP loaded!")
|
| 56 |
return True
|
| 57 |
-
|
| 58 |
except Exception as e:
|
| 59 |
print(f"β BiomedCLIP error: {e}")
|
| 60 |
return False
|
| 61 |
|
| 62 |
-
def
|
| 63 |
-
"""Load Qwen
|
| 64 |
-
global qwen_model, qwen_tokenizer
|
| 65 |
|
| 66 |
try:
|
| 67 |
-
print("π Loading Qwen...")
|
| 68 |
|
| 69 |
-
# Load
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
print(f"β
Loaded {len(medical_knowledge)} medical docs")
|
| 75 |
-
except:
|
| 76 |
-
# Fallback knowledge base
|
| 77 |
-
medical_knowledge = [
|
| 78 |
-
{
|
| 79 |
-
"category": "partial_acl_injury",
|
| 80 |
-
"advice": "Partial ACL injury detected. Recommend: rest, ice therapy, physical therapy consultation, avoid pivoting activities. Follow-up MRI in 6-8 weeks to assess healing progress."
|
| 81 |
-
},
|
| 82 |
-
{
|
| 83 |
-
"category": "complete_acl_tear",
|
| 84 |
-
"advice": "Complete ACL tear detected. Urgent orthopedic consultation required. Likely surgical reconstruction needed, especially for active patients. Immediate immobilization recommended."
|
| 85 |
-
},
|
| 86 |
-
{
|
| 87 |
-
"category": "acl_sprain",
|
| 88 |
-
"advice": "ACL sprain detected. Conservative management with RICE protocol. Physical therapy for strengthening. Return to activity when pain-free and strength restored."
|
| 89 |
-
},
|
| 90 |
-
{
|
| 91 |
-
"category": "normal",
|
| 92 |
-
"advice": "ACL appears normal on MRI. Continue regular activities. If symptoms persist, consider clinical examination for other possible causes."
|
| 93 |
-
}
|
| 94 |
-
]
|
| 95 |
-
print("β οΈ Using fallback medical knowledge")
|
| 96 |
|
| 97 |
-
# Load Qwen
|
| 98 |
-
qwen_tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen1.5-0.5B-Chat", trust_remote_code=True)
|
| 99 |
qwen_model = AutoModelForCausalLM.from_pretrained(
|
| 100 |
"Qwen/Qwen1.5-0.5B-Chat",
|
| 101 |
torch_dtype=torch.float32,
|
| 102 |
trust_remote_code=True
|
| 103 |
)
|
| 104 |
-
qwen_model.eval()
|
| 105 |
|
| 106 |
print("β
Qwen loaded!")
|
| 107 |
return True
|
| 108 |
|
| 109 |
except Exception as e:
|
| 110 |
print(f"β Qwen error: {e}")
|
| 111 |
-
print(traceback.format_exc())
|
| 112 |
return False
|
| 113 |
|
| 114 |
-
def
|
| 115 |
-
"""
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
condition = classification_result.lower()
|
| 119 |
-
|
| 120 |
-
# Find matching advice
|
| 121 |
-
for doc in medical_knowledge:
|
| 122 |
-
if doc['category'].lower() in condition or any(tag in condition for tag in doc.get('tags', [])):
|
| 123 |
-
return doc.get('advice', 'No specific advice available for this condition.')
|
| 124 |
-
|
| 125 |
-
# Generic advice if no match
|
| 126 |
-
return "Consult with a medical professional for proper evaluation and treatment recommendations."
|
| 127 |
-
|
| 128 |
-
def generate_qwen_advice(classification_result, medical_context):
|
| 129 |
-
"""Generate advice using Qwen"""
|
| 130 |
-
global qwen_model, qwen_tokenizer
|
| 131 |
-
|
| 132 |
-
if qwen_model is None:
|
| 133 |
-
return "β Qwen model not available"
|
| 134 |
-
|
| 135 |
-
try:
|
| 136 |
-
# Create medical prompt
|
| 137 |
-
prompt = f"""Medical Image Analysis Result: {classification_result}
|
| 138 |
-
|
| 139 |
-
Relevant Medical Knowledge: {medical_context}
|
| 140 |
-
|
| 141 |
-
Based on this MRI classification, provide clinical recommendations including:
|
| 142 |
-
1. Immediate actions needed
|
| 143 |
-
2. Treatment options
|
| 144 |
-
3. Follow-up requirements
|
| 145 |
-
4. Patient advice
|
| 146 |
-
|
| 147 |
-
Response:"""
|
| 148 |
-
|
| 149 |
-
# Tokenize and generate
|
| 150 |
-
inputs = qwen_tokenizer(prompt, return_tensors="pt", max_length=500, truncation=True)
|
| 151 |
-
|
| 152 |
-
with torch.no_grad():
|
| 153 |
-
outputs = qwen_model.generate(
|
| 154 |
-
inputs.input_ids,
|
| 155 |
-
max_new_tokens=150,
|
| 156 |
-
temperature=0.7,
|
| 157 |
-
do_sample=True,
|
| 158 |
-
pad_token_id=qwen_tokenizer.eos_token_id
|
| 159 |
-
)
|
| 160 |
-
|
| 161 |
-
# Decode response
|
| 162 |
-
generated_ids = outputs[0][len(inputs.input_ids[0]):]
|
| 163 |
-
advice = qwen_tokenizer.decode(generated_ids, skip_special_tokens=True).strip()
|
| 164 |
-
|
| 165 |
-
return advice
|
| 166 |
-
|
| 167 |
-
except Exception as e:
|
| 168 |
-
return f"β Qwen generation error: {str(e)}"
|
| 169 |
-
|
| 170 |
-
def complete_analysis(image):
|
| 171 |
-
"""Complete pipeline: Classification + Medical Advice"""
|
| 172 |
-
|
| 173 |
-
if image is None:
|
| 174 |
-
return "β Please upload an MRI scan", ""
|
| 175 |
-
|
| 176 |
-
print("π₯ Starting complete analysis...")
|
| 177 |
|
| 178 |
-
# Step 1: Classify with BiomedCLIP
|
| 179 |
try:
|
| 180 |
-
# Classification code (same as your working debug version)
|
| 181 |
-
if biomedclip_model is None:
|
| 182 |
-
return "β BiomedCLIP not loaded", ""
|
| 183 |
-
|
| 184 |
if image.mode != 'RGB':
|
| 185 |
image = image.convert('RGB')
|
| 186 |
|
|
@@ -202,28 +106,89 @@ def complete_analysis(image):
|
|
| 202 |
class_name = f"Class_{class_idx}"
|
| 203 |
|
| 204 |
confidence = top_prob.item() * 100
|
| 205 |
-
classification_result = f"{class_name} (confidence: {confidence:.1f}%)"
|
| 206 |
|
| 207 |
-
|
| 208 |
|
| 209 |
except Exception as e:
|
| 210 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 211 |
|
| 212 |
-
# Step 2: Get medical advice
|
| 213 |
try:
|
| 214 |
-
|
| 215 |
-
medical_context = find_medical_advice(class_name)
|
| 216 |
|
| 217 |
-
#
|
| 218 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 219 |
|
| 220 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 221 |
|
| 222 |
except Exception as e:
|
| 223 |
-
|
| 224 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 225 |
|
| 226 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 227 |
classification_text = f"""
|
| 228 |
# π¬ **MRI Classification**
|
| 229 |
|
|
@@ -232,66 +197,46 @@ def complete_analysis(image):
|
|
| 232 |
|
| 233 |
## π **Confidence:**
|
| 234 |
**{confidence:.1f}%**
|
| 235 |
-
|
| 236 |
-
## π **Details:**
|
| 237 |
-
- Class index: {class_idx}
|
| 238 |
-
- Total classes: {len(biomedclip_id2label)}
|
| 239 |
-
- Model: BiomedCLIP
|
| 240 |
"""
|
| 241 |
|
| 242 |
advice_text = f"""
|
| 243 |
-
# π₯ **
|
| 244 |
-
|
| 245 |
-
## π‘ **AI-Generated Advice:**
|
| 246 |
|
| 247 |
-
{
|
| 248 |
-
|
| 249 |
-
## π **Medical Knowledge:**
|
| 250 |
-
|
| 251 |
-
{medical_context}
|
| 252 |
|
| 253 |
---
|
| 254 |
-
β οΈ **Disclaimer:** For educational purposes only.
|
| 255 |
"""
|
| 256 |
|
| 257 |
return classification_text, advice_text
|
| 258 |
|
| 259 |
# Load models
|
| 260 |
-
print("π Initializing models...")
|
| 261 |
biomedclip_loaded = load_biomedclip()
|
| 262 |
-
qwen_loaded =
|
| 263 |
|
| 264 |
# Create interface
|
| 265 |
with gr.Blocks(title="Medical AI Pipeline") as app:
|
| 266 |
|
| 267 |
-
gr.Markdown("# π₯
|
| 268 |
-
gr.Markdown("**BiomedCLIP** (
|
| 269 |
|
| 270 |
-
|
| 271 |
-
|
| 272 |
-
gr.Markdown(f"**Status:** {status_text}")
|
| 273 |
|
| 274 |
with gr.Row():
|
| 275 |
with gr.Column():
|
| 276 |
-
image_input = gr.Image(type="pil", label="πΈ Upload MRI Scan"
|
| 277 |
-
analyze_btn = gr.Button("π¬ Complete Analysis", variant="primary"
|
| 278 |
-
clear_btn = gr.Button("ποΈ Clear")
|
| 279 |
|
| 280 |
with gr.Column():
|
| 281 |
classification_output = gr.Markdown(label="π¬ Classification")
|
| 282 |
-
advice_output = gr.Markdown(label="π₯ Medical Advice")
|
| 283 |
|
| 284 |
-
# Button actions
|
| 285 |
analyze_btn.click(
|
| 286 |
-
fn=
|
| 287 |
inputs=image_input,
|
| 288 |
outputs=[classification_output, advice_output]
|
| 289 |
)
|
| 290 |
-
|
| 291 |
-
clear_btn.click(
|
| 292 |
-
fn=lambda: [None, "", ""],
|
| 293 |
-
outputs=[image_input, classification_output, advice_output]
|
| 294 |
-
)
|
| 295 |
|
| 296 |
if __name__ == "__main__":
|
| 297 |
app.launch()
|
|
|
|
| 6 |
from PIL import Image
|
| 7 |
import torch.nn.functional as F
|
| 8 |
import json
|
|
|
|
| 9 |
|
| 10 |
# Model repositories
|
| 11 |
BIOMEDCLIP_REPO = "AssanaliAidarkhan/Biomedclip"
|
|
|
|
| 12 |
|
| 13 |
# Global variables
|
| 14 |
biomedclip_model = None
|
|
|
|
| 16 |
biomedclip_id2label = {}
|
| 17 |
qwen_model = None
|
| 18 |
qwen_tokenizer = None
|
|
|
|
| 19 |
|
| 20 |
class CLIPClassifier(nn.Module):
|
| 21 |
def __init__(self, clip_model, num_classes):
|
|
|
|
| 29 |
return {'logits': logits}
|
| 30 |
|
| 31 |
def load_biomedclip():
|
| 32 |
+
"""Load BiomedCLIP (we know this works)"""
|
| 33 |
global biomedclip_model, biomedclip_processor, biomedclip_id2label
|
| 34 |
|
| 35 |
try:
|
|
|
|
|
|
|
| 36 |
model_path = hf_hub_download(repo_id=BIOMEDCLIP_REPO, filename="pytorch_model.bin")
|
| 37 |
checkpoint = torch.load(model_path, map_location='cpu')
|
| 38 |
|
|
|
|
| 49 |
|
| 50 |
print("β
BiomedCLIP loaded!")
|
| 51 |
return True
|
|
|
|
| 52 |
except Exception as e:
|
| 53 |
print(f"β BiomedCLIP error: {e}")
|
| 54 |
return False
|
| 55 |
|
| 56 |
+
def load_qwen_simple():
|
| 57 |
+
"""Load Qwen with minimal setup"""
|
| 58 |
+
global qwen_model, qwen_tokenizer
|
| 59 |
|
| 60 |
try:
|
| 61 |
+
print("π Loading Qwen (simple)...")
|
| 62 |
|
| 63 |
+
# Load Qwen directly
|
| 64 |
+
qwen_tokenizer = AutoTokenizer.from_pretrained(
|
| 65 |
+
"Qwen/Qwen1.5-0.5B-Chat",
|
| 66 |
+
trust_remote_code=True
|
| 67 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 68 |
|
|
|
|
|
|
|
| 69 |
qwen_model = AutoModelForCausalLM.from_pretrained(
|
| 70 |
"Qwen/Qwen1.5-0.5B-Chat",
|
| 71 |
torch_dtype=torch.float32,
|
| 72 |
trust_remote_code=True
|
| 73 |
)
|
|
|
|
| 74 |
|
| 75 |
print("β
Qwen loaded!")
|
| 76 |
return True
|
| 77 |
|
| 78 |
except Exception as e:
|
| 79 |
print(f"β Qwen error: {e}")
|
|
|
|
| 80 |
return False
|
| 81 |
|
| 82 |
+
def classify_mri(image):
|
| 83 |
+
"""Classify MRI (working code)"""
|
| 84 |
+
if biomedclip_model is None or image is None:
|
| 85 |
+
return None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 86 |
|
|
|
|
| 87 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
| 88 |
if image.mode != 'RGB':
|
| 89 |
image = image.convert('RGB')
|
| 90 |
|
|
|
|
| 106 |
class_name = f"Class_{class_idx}"
|
| 107 |
|
| 108 |
confidence = top_prob.item() * 100
|
|
|
|
| 109 |
|
| 110 |
+
return class_name, confidence
|
| 111 |
|
| 112 |
except Exception as e:
|
| 113 |
+
print(f"Classification error: {e}")
|
| 114 |
+
return None, None
|
| 115 |
+
|
| 116 |
+
def generate_simple_advice(class_name, confidence):
|
| 117 |
+
"""Generate advice using Qwen (simple approach)"""
|
| 118 |
+
global qwen_model, qwen_tokenizer
|
| 119 |
+
|
| 120 |
+
if qwen_model is None:
|
| 121 |
+
return "β Qwen model not loaded"
|
| 122 |
|
|
|
|
| 123 |
try:
|
| 124 |
+
print(f"π Generating advice for: {class_name}")
|
|
|
|
| 125 |
|
| 126 |
+
# Simple medical knowledge lookup
|
| 127 |
+
advice_map = {
|
| 128 |
+
"partial_acl_injury": "Partial ACL injury detected. Recommendations: Rest and avoid pivoting activities. Apply ice for 15-20 minutes several times daily. Consider physical therapy consultation. Follow-up MRI in 6-8 weeks to monitor healing.",
|
| 129 |
+
"complete_acl_tear": "Complete ACL tear detected. Urgent orthopedic consultation required. Likely surgical reconstruction needed. Immediate immobilization and avoid weight-bearing activities.",
|
| 130 |
+
"acl_sprain": "ACL sprain detected. Conservative treatment with RICE protocol (Rest, Ice, Compression, Elevation). Physical therapy for strengthening. Gradual return to activities.",
|
| 131 |
+
"normal": "ACL appears normal. Continue regular activities. If symptoms persist, consider clinical examination for other causes."
|
| 132 |
+
}
|
| 133 |
|
| 134 |
+
# Get base advice
|
| 135 |
+
base_advice = advice_map.get(class_name.lower(), "Consult medical professional for evaluation.")
|
| 136 |
+
|
| 137 |
+
# Create simple prompt for Qwen
|
| 138 |
+
simple_prompt = f"Medical diagnosis: {class_name} with {confidence:.1f}% confidence. Provide brief clinical advice:"
|
| 139 |
+
|
| 140 |
+
# Tokenize
|
| 141 |
+
inputs = qwen_tokenizer(simple_prompt, return_tensors="pt")
|
| 142 |
+
|
| 143 |
+
# Generate
|
| 144 |
+
with torch.no_grad():
|
| 145 |
+
outputs = qwen_model.generate(
|
| 146 |
+
inputs.input_ids,
|
| 147 |
+
max_new_tokens=100,
|
| 148 |
+
temperature=0.8,
|
| 149 |
+
do_sample=True,
|
| 150 |
+
pad_token_id=qwen_tokenizer.eos_token_id
|
| 151 |
+
)
|
| 152 |
+
|
| 153 |
+
# Decode
|
| 154 |
+
full_output = qwen_tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 155 |
+
|
| 156 |
+
# Extract just the generated part
|
| 157 |
+
if simple_prompt in full_output:
|
| 158 |
+
generated_advice = full_output.replace(simple_prompt, "").strip()
|
| 159 |
+
else:
|
| 160 |
+
generated_advice = full_output
|
| 161 |
+
|
| 162 |
+
# Combine base advice with Qwen advice
|
| 163 |
+
if generated_advice and len(generated_advice) > 10:
|
| 164 |
+
combined_advice = f"**Clinical Guidelines:** {base_advice}\n\n**AI Analysis:** {generated_advice}"
|
| 165 |
+
else:
|
| 166 |
+
combined_advice = base_advice
|
| 167 |
+
|
| 168 |
+
print(f"β
Generated advice: {generated_advice[:50]}...")
|
| 169 |
+
return combined_advice
|
| 170 |
|
| 171 |
except Exception as e:
|
| 172 |
+
print(f"β Advice generation error: {e}")
|
| 173 |
+
# Fallback to basic advice
|
| 174 |
+
return advice_map.get(class_name.lower(), "Consult medical professional for evaluation.")
|
| 175 |
+
|
| 176 |
+
def complete_pipeline(image):
|
| 177 |
+
"""Complete analysis pipeline"""
|
| 178 |
+
|
| 179 |
+
if image is None:
|
| 180 |
+
return "β Please upload an MRI scan", ""
|
| 181 |
+
|
| 182 |
+
# Step 1: Classification
|
| 183 |
+
class_name, confidence = classify_mri(image)
|
| 184 |
|
| 185 |
+
if class_name is None:
|
| 186 |
+
return "β Classification failed", ""
|
| 187 |
+
|
| 188 |
+
# Step 2: Medical advice
|
| 189 |
+
medical_advice = generate_simple_advice(class_name, confidence)
|
| 190 |
+
|
| 191 |
+
# Format outputs
|
| 192 |
classification_text = f"""
|
| 193 |
# π¬ **MRI Classification**
|
| 194 |
|
|
|
|
| 197 |
|
| 198 |
## π **Confidence:**
|
| 199 |
**{confidence:.1f}%**
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 200 |
"""
|
| 201 |
|
| 202 |
advice_text = f"""
|
| 203 |
+
# π₯ **Medical Recommendations**
|
|
|
|
|
|
|
| 204 |
|
| 205 |
+
{medical_advice}
|
|
|
|
|
|
|
|
|
|
|
|
|
| 206 |
|
| 207 |
---
|
| 208 |
+
β οΈ **Disclaimer:** For educational purposes only. Consult medical professionals.
|
| 209 |
"""
|
| 210 |
|
| 211 |
return classification_text, advice_text
|
| 212 |
|
| 213 |
# Load models
|
|
|
|
| 214 |
biomedclip_loaded = load_biomedclip()
|
| 215 |
+
qwen_loaded = load_qwen_simple()
|
| 216 |
|
| 217 |
# Create interface
|
| 218 |
with gr.Blocks(title="Medical AI Pipeline") as app:
|
| 219 |
|
| 220 |
+
gr.Markdown("# π₯ Medical AI Analysis Pipeline")
|
| 221 |
+
gr.Markdown("**BiomedCLIP** (Classification) + **Qwen** (Medical Advice)")
|
| 222 |
|
| 223 |
+
status = f"Status: BiomedCLIP {'β
' if biomedclip_loaded else 'β'} | Qwen {'β
' if qwen_loaded else 'β'}"
|
| 224 |
+
gr.Markdown(f"**{status}**")
|
|
|
|
| 225 |
|
| 226 |
with gr.Row():
|
| 227 |
with gr.Column():
|
| 228 |
+
image_input = gr.Image(type="pil", label="πΈ Upload MRI Scan")
|
| 229 |
+
analyze_btn = gr.Button("π¬ Complete Analysis", variant="primary")
|
|
|
|
| 230 |
|
| 231 |
with gr.Column():
|
| 232 |
classification_output = gr.Markdown(label="π¬ Classification")
|
| 233 |
+
advice_output = gr.Markdown(label="π₯ Medical Advice")
|
| 234 |
|
|
|
|
| 235 |
analyze_btn.click(
|
| 236 |
+
fn=complete_pipeline,
|
| 237 |
inputs=image_input,
|
| 238 |
outputs=[classification_output, advice_output]
|
| 239 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 240 |
|
| 241 |
if __name__ == "__main__":
|
| 242 |
app.launch()
|