File size: 1,496 Bytes
bf2b21f
645c867
 
 
1b5ee57
645c867
 
 
 
1b5ee57
 
4d867ac
bf2b21f
1b5ee57
690d3d8
1b5ee57
 
645c867
 
 
 
 
 
 
 
 
 
1b5ee57
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
645c867
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
import os
from fastapi import FastAPI, Request
from fastapi.responses import JSONResponse, FileResponse
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
import uvicorn

app = FastAPI()

# Imposta la cache per Hugging Face in una directory scrivibile
os.environ["HF_HOME"] = "/tmp/huggingface"
os.makedirs("/tmp/huggingface", exist_ok=True)

# Carica il modello DialoGPT
model_name = "facebook/blenderbot-3B"
tokenizer = AutoTokenizer.from_pretrained(model_name, cache_dir="/tmp/huggingface")
model = AutoModelForCausalLM.from_pretrained(model_name, cache_dir="/tmp/huggingface")

@app.get("/")
async def serve_index():
    return FileResponse("static/index.html")

@app.post("/chat")
async def chat(request: Request):
    data = await request.json()
    prompt = data.get("prompt", "")

    # Tokenizzazione del prompt
    input_ids = tokenizer.encode(prompt + tokenizer.eos_token, return_tensors="pt")

    # Generazione della risposta
    response_ids = model.generate(
        input_ids,
        max_length=100,
        num_return_sequences=1,
        pad_token_id=tokenizer.eos_token_id,
        attention_mask=torch.ones(input_ids.shape, dtype=torch.long)  # Aggiunto per correggere l'errore
    )

    # Decodifica della risposta
    response_text = tokenizer.decode(response_ids[:, input_ids.shape[-1]:][0], skip_special_tokens=True)

    return JSONResponse({"response": response_text})

if __name__ == "__main__":
    uvicorn.run(app, host="0.0.0.0", port=7860)