Update app.py
Browse files
app.py
CHANGED
@@ -1,45 +1,46 @@
|
|
1 |
import os
|
2 |
-
|
3 |
-
# Imposta la cache dei modelli in una cartella scrivibile all'interno della home dell'utente
|
4 |
-
os.environ["HF_HOME"] = "/tmp/huggingface"
|
5 |
-
|
6 |
from fastapi import FastAPI, Request
|
7 |
from fastapi.responses import JSONResponse, FileResponse
|
8 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
|
9 |
import uvicorn
|
10 |
|
11 |
app = FastAPI()
|
12 |
|
13 |
-
#
|
|
|
14 |
os.makedirs("/tmp/huggingface", exist_ok=True)
|
15 |
|
16 |
-
# Carica il modello
|
17 |
-
model_name = "microsoft/DialoGPT-
|
18 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
19 |
-
model = AutoModelForCausalLM.from_pretrained(model_name)
|
20 |
|
21 |
-
# Servire il frontend statico
|
22 |
@app.get("/")
|
23 |
async def serve_index():
|
24 |
return FileResponse("static/index.html")
|
25 |
|
26 |
-
# API per la chat
|
27 |
@app.post("/chat")
|
28 |
async def chat(request: Request):
|
29 |
data = await request.json()
|
30 |
prompt = data.get("prompt", "")
|
31 |
|
32 |
-
# Tokenizzazione
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
if __name__ == "__main__":
|
45 |
uvicorn.run(app, host="0.0.0.0", port=7860)
|
|
|
1 |
import os
|
|
|
|
|
|
|
|
|
2 |
from fastapi import FastAPI, Request
|
3 |
from fastapi.responses import JSONResponse, FileResponse
|
4 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
5 |
+
import torch
|
6 |
import uvicorn
|
7 |
|
8 |
app = FastAPI()
|
9 |
|
10 |
+
# Imposta la cache per Hugging Face in una directory scrivibile
|
11 |
+
os.environ["HF_HOME"] = "/tmp/huggingface"
|
12 |
os.makedirs("/tmp/huggingface", exist_ok=True)
|
13 |
|
14 |
+
# Carica il modello DialoGPT
|
15 |
+
model_name = "microsoft/DialoGPT-small"
|
16 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, cache_dir="/tmp/huggingface")
|
17 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, cache_dir="/tmp/huggingface")
|
18 |
|
|
|
19 |
@app.get("/")
|
20 |
async def serve_index():
|
21 |
return FileResponse("static/index.html")
|
22 |
|
|
|
23 |
@app.post("/chat")
|
24 |
async def chat(request: Request):
|
25 |
data = await request.json()
|
26 |
prompt = data.get("prompt", "")
|
27 |
|
28 |
+
# Tokenizzazione del prompt
|
29 |
+
input_ids = tokenizer.encode(prompt + tokenizer.eos_token, return_tensors="pt")
|
30 |
+
|
31 |
+
# Generazione della risposta
|
32 |
+
response_ids = model.generate(
|
33 |
+
input_ids,
|
34 |
+
max_length=100,
|
35 |
+
num_return_sequences=1,
|
36 |
+
pad_token_id=tokenizer.eos_token_id,
|
37 |
+
attention_mask=torch.ones(input_ids.shape, dtype=torch.long) # Aggiunto per correggere l'errore
|
38 |
+
)
|
39 |
+
|
40 |
+
# Decodifica della risposta
|
41 |
+
response_text = tokenizer.decode(response_ids[:, input_ids.shape[-1]:][0], skip_special_tokens=True)
|
42 |
+
|
43 |
+
return JSONResponse({"response": response_text})
|
44 |
|
45 |
if __name__ == "__main__":
|
46 |
uvicorn.run(app, host="0.0.0.0", port=7860)
|