Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI, Request
|
2 |
+
from fastapi.responses import JSONResponse, FileResponse
|
3 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
4 |
+
import uvicorn
|
5 |
+
|
6 |
+
app = FastAPI()
|
7 |
+
|
8 |
+
# Carica il modello Hugging Face
|
9 |
+
model_name = "microsoft/DialoGPT-small"
|
10 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
11 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
12 |
+
|
13 |
+
# Servire il frontend statico
|
14 |
+
@app.get("/")
|
15 |
+
async def serve_index():
|
16 |
+
return FileResponse("static/index.html")
|
17 |
+
|
18 |
+
# API per la chat
|
19 |
+
@app.post("/chat")
|
20 |
+
async def chat(request: Request):
|
21 |
+
data = await request.json()
|
22 |
+
prompt = data.get("prompt", "")
|
23 |
+
|
24 |
+
# Tokenizzazione e generazione della risposta
|
25 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
26 |
+
outputs = model.generate(inputs["input_ids"], max_length=50)
|
27 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
28 |
+
|
29 |
+
return JSONResponse({"response": response})
|
30 |
+
|
31 |
+
if __name__ == "__main__":
|
32 |
+
uvicorn.run(app, host="0.0.0.0", port=7860)
|