File size: 73,945 Bytes
ace98bc
 
 
2179021
 
ace98bc
c51bf76
ace98bc
 
 
 
 
c51bf76
 
 
ace98bc
 
6b314b5
77d052e
1f93876
 
 
 
6b314b5
1f93876
 
 
2179021
77d052e
b088225
 
 
6b314b5
b088225
 
 
6b314b5
b088225
 
 
 
 
 
 
 
 
 
 
 
 
6b314b5
b088225
 
 
 
 
 
 
6b314b5
b088225
c51bf76
 
b088225
 
 
6b314b5
1f93876
04e5963
6b314b5
7ab325b
 
04e5963
c51bf76
 
 
 
04e5963
c51bf76
 
 
 
6b314b5
c51bf76
 
 
 
77d052e
c51bf76
04e5963
c51bf76
77d052e
c51bf76
 
6b314b5
 
c51bf76
04e5963
c51bf76
77d052e
2179021
6b314b5
 
c51bf76
77d052e
c51bf76
04e5963
c51bf76
77d052e
 
 
6b314b5
77d052e
 
6b314b5
77d052e
 
6b314b5
77d052e
 
 
 
 
8cf2942
 
 
6b314b5
 
 
 
 
 
8cf2942
77d052e
8cf2942
 
 
77d052e
8cf2942
 
 
77d052e
 
 
8cf2942
 
 
6b314b5
 
 
 
 
 
77d052e
 
 
 
 
 
8cf2942
77d052e
8cf2942
 
6b314b5
77d052e
 
9e0e49b
 
77d052e
6b314b5
 
 
 
 
 
9e0e49b
77d052e
9e0e49b
77d052e
9e0e49b
77d052e
8446618
77d052e
 
 
 
 
 
6b314b5
 
 
 
 
 
77d052e
 
 
 
 
 
620e5bd
 
77d052e
 
 
 
 
 
 
 
 
 
2c1a2ad
6b314b5
77d052e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2c1a2ad
6b314b5
77d052e
 
8446618
77d052e
 
 
 
 
 
 
b97656c
6b314b5
77d052e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8446618
77d052e
 
 
6b314b5
77d052e
7ab325b
8446618
77d052e
 
 
 
 
 
 
8446618
6b314b5
 
77d052e
6b314b5
 
 
77d052e
6b314b5
77d052e
6b314b5
8ffa722
6b314b5
 
77d052e
6b314b5
 
 
8ffa722
6b314b5
 
 
77d052e
6b314b5
 
 
2c1a2ad
6b314b5
 
 
77d052e
6b314b5
 
 
3aba1a9
6b314b5
 
 
77d052e
6b314b5
 
 
8ffa722
6b314b5
 
 
 
 
 
 
 
77d052e
 
8446618
6b314b5
77d052e
 
 
 
 
 
 
 
 
 
 
6b314b5
 
 
 
 
 
 
 
 
 
 
 
 
77d052e
8ffa722
6b314b5
 
 
 
77d052e
2bed1c4
6b314b5
 
 
 
8ffa722
6b314b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8ffa722
6b314b5
 
 
 
 
 
 
 
 
 
 
 
8ffa722
6b314b5
 
 
 
 
 
 
 
 
8ffa722
6b314b5
 
 
 
 
 
 
 
 
 
 
 
 
8ffa722
6b314b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c3fd7da
 
 
 
 
 
 
 
 
6b314b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6fa6094
6b314b5
 
6fa6094
6b314b5
6fa6094
6b314b5
 
6fa6094
6b314b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
77d052e
6b314b5
 
 
2bed1c4
6b314b5
 
 
 
 
 
77d052e
6b314b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
77d052e
 
 
 
 
6b314b5
 
 
 
 
 
 
 
2bed1c4
6b314b5
77d052e
6b314b5
77d052e
6b314b5
77d052e
 
 
 
8446618
2bed1c4
77d052e
 
 
 
 
6b314b5
77d052e
6b314b5
77d052e
6b314b5
 
 
77d052e
6b314b5
 
 
 
 
 
77d052e
6b314b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
77d052e
6b314b5
 
77d052e
6b314b5
 
77d052e
6b314b5
 
77d052e
6b314b5
 
 
 
77d052e
6b314b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
77d052e
 
6b314b5
77d052e
6b314b5
77d052e
6b314b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
77d052e
6b314b5
 
 
77d052e
6b314b5
 
 
 
77d052e
6b314b5
 
 
77d052e
6b314b5
 
 
77d052e
6b314b5
 
77d052e
6b314b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
77d052e
6b314b5
 
 
77d052e
6b314b5
77d052e
6b314b5
 
 
 
 
 
77d052e
6b314b5
 
 
77d052e
6b314b5
 
 
77d052e
6b314b5
 
 
 
 
77d052e
6b314b5
 
8ffa722
6b314b5
8ffa722
6b314b5
 
 
 
 
8ffa722
6b314b5
 
 
 
 
 
 
 
8ffa722
6b314b5
 
8ffa722
6b314b5
77d052e
6b314b5
 
 
 
77d052e
6b314b5
 
 
 
 
 
 
 
 
 
 
 
 
 
77d052e
 
 
 
6b314b5
 
 
 
 
77d052e
 
6b314b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
77d052e
6b314b5
 
 
 
 
77d052e
6b314b5
 
 
 
 
77d052e
6b314b5
77d052e
6b314b5
 
 
 
 
 
 
 
 
 
 
 
77d052e
6b314b5
 
77d052e
6b314b5
 
 
 
 
77d052e
c51bf76
6b314b5
 
 
 
 
2bed1c4
6b314b5
 
 
77d052e
6b314b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c51bf76
6b314b5
 
 
8446618
6b314b5
77d052e
 
04e5963
6b314b5
 
 
 
8ffa722
6b314b5
 
 
 
 
 
 
 
 
 
 
 
 
 
cf20009
c51bf76
6b314b5
 
77d052e
 
 
6b314b5
77d052e
 
6b314b5
77d052e
6b314b5
77d052e
6b314b5
77d052e
c51bf76
6b314b5
 
070d018
6b314b5
070d018
 
6b314b5
 
070d018
 
04e5963
c51bf76
6b314b5
77d052e
6b314b5
77d052e
6b314b5
 
77d052e
6b314b5
77d052e
 
6b314b5
 
77d052e
 
 
 
6b314b5
77d052e
 
 
 
 
 
 
 
6b314b5
77d052e
 
 
 
 
 
 
 
 
 
 
6b314b5
04e5963
13addaa
6b314b5
77d052e
6b314b5
 
8446618
cf20009
620e5bd
 
6b314b5
77d052e
620e5bd
 
 
 
 
 
6b314b5
 
620e5bd
 
6b314b5
 
620e5bd
 
6b314b5
 
620e5bd
 
77d052e
 
 
6b314b5
77d052e
6b314b5
620e5bd
77d052e
6b314b5
 
77d052e
 
 
 
 
 
b97656c
77d052e
 
 
 
 
 
 
6b314b5
8446618
6b314b5
77d052e
 
 
 
6b314b5
77d052e
6b314b5
77d052e
6b314b5
77d052e
6b314b5
77d052e
6b314b5
 
8446618
77d052e
6b314b5
 
77d052e
 
 
 
 
 
 
 
6b314b5
77d052e
6b314b5
77d052e
6b314b5
914fff5
6b314b5
 
2c1a2ad
77d052e
6b314b5
8446618
6b314b5
 
77d052e
 
6b314b5
 
77d052e
 
6b314b5
77d052e
 
 
 
 
8446618
77d052e
914fff5
6b314b5
914fff5
6b314b5
914fff5
6b314b5
914fff5
77d052e
6b314b5
77d052e
6b314b5
 
 
 
 
 
 
 
9e0e49b
77d052e
c51bf76
7ab325b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
import os
import io
import sys
import json
import time
import hashlib
import logging
import requests
import subprocess
import pandas as pd
import altair as alt
import streamlit as st
from pathlib import Path
import plotly.express as px
import plotly.graph_objects as go
from datetime import datetime, timedelta
from typing import Dict, List, Optional, Any


# Import the new path manager
try:
    from path_config import path_manager
except ImportError:
    # Add current directory to path
    sys.path.append(os.path.dirname(os.path.abspath(__file__)))
    sys.path.append('/app')
    from path_config import path_manager

# Configure logging with error handling for restricted environments
def setup_streamlit_logging():
    """Setup logging with fallback for restricted file access"""
    try:
        # Try to create a log file in logs directory
        log_file_path = path_manager.get_logs_path('streamlit_app.log')
        log_file_path.parent.mkdir(parents=True, exist_ok=True)
        
        # Test write access
        with open(log_file_path, 'a') as test_file:
            test_file.write('')
        
        logging.basicConfig(
            level=logging.INFO,
            format='%(asctime)s - %(levelname)s - %(message)s',
            handlers=[
                logging.FileHandler(log_file_path),
                logging.StreamHandler()
            ]
        )
        return True
    except (PermissionError, OSError):
        # Fallback to console-only logging
        logging.basicConfig(
            level=logging.INFO,
            format='%(asctime)s - %(levelname)s - %(message)s',
            handlers=[logging.StreamHandler()]
        )
        return False

# Setup logging
file_logging_enabled = setup_streamlit_logging()
logger = logging.getLogger(__name__)

if not file_logging_enabled:
    logger.warning("File logging disabled due to permission restrictions")

# Log environment info at startup
logger.info(f"Streamlit starting in {path_manager.environment} environment")


class StreamlitAppManager:
    """Manages Streamlit application state and functionality with dynamic paths"""

    def __init__(self):
        self.setup_config()
        self.setup_api_client()
        self.initialize_session_state()

    def setup_config(self):
        """Setup application configuration"""
        self.config = {
            'api_url': "http://localhost:8000",
            'max_upload_size': 1000 * 1024 * 1024,  # 1000 MB
            'supported_file_types': ['csv', 'txt', 'json'],
            'max_text_length': 10000,
            'prediction_timeout': 30,
            'refresh_interval': 60,
            'max_batch_size': 100
        }

    def setup_api_client(self):
        """Setup API client with error handling"""
        self.session = requests.Session()
        self.session.timeout = self.config['prediction_timeout']

        # Test API connection
        self.api_available = self.test_api_connection()

    def test_api_connection(self) -> bool:
        """Test API connection"""
        try:
            response = self.session.get(
                f"{self.config['api_url']}/health", timeout=5)
            return response.status_code == 200
        except:
            return False

    def initialize_session_state(self):
        """Initialize Streamlit session state"""
        if 'prediction_history' not in st.session_state:
            st.session_state.prediction_history = []

        if 'upload_history' not in st.session_state:
            st.session_state.upload_history = []

        if 'last_refresh' not in st.session_state:
            st.session_state.last_refresh = datetime.now()

        if 'auto_refresh' not in st.session_state:
            st.session_state.auto_refresh = False

    def get_cv_results_from_api(self):
        """Get cross-validation results from API"""
        try:
            if not self.api_available:
                return None
            
            response = self.session.get(
                f"{self.config['api_url']}/cv/results",
                timeout=10
            )
            
            if response.status_code == 200:
                return response.json()
            elif response.status_code == 404:
                return {'error': 'No CV results available'}
            else:
                return None
        except Exception as e:
            logger.warning(f"Could not fetch CV results: {e}")
            return None
    
    def get_model_comparison_from_api(self):
        """Get model comparison results from API"""
        try:
            if not self.api_available:
                return None
            
            response = self.session.get(
                f"{self.config['api_url']}/cv/comparison",
                timeout=10
            )
            
            if response.status_code == 200:
                return response.json()
            elif response.status_code == 404:
                return {'error': 'No comparison results available'}
            else:
                return None
        except Exception as e:
            logger.warning(f"Could not fetch model comparison: {e}")
            return None


    def get_validation_statistics_from_api(self):
        """Get validation statistics from API"""
        try:
            if not self.api_available:
                return None
            
            response = self.session.get(
                f"{self.config['api_url']}/validation/statistics",
                timeout=10
            )
            
            if response.status_code == 200:
                return response.json()
            else:
                return None
        except Exception as e:
            logger.warning(f"Could not fetch validation statistics: {e}")
            return None
    
    def get_validation_health_from_api(self):
        """Get validation system health from API"""
        try:
            if not self.api_available:
                return None
            
            response = self.session.get(
                f"{self.config['api_url']}/validation/health",
                timeout=10
            )
            
            if response.status_code == 200:
                return response.json()
            else:
                return None
        except Exception as e:
            logger.warning(f"Could not fetch validation health: {e}")
            return None

    def get_validation_quality_report_from_api(self):
        """Get validation quality report from API"""
        try:
            if not self.api_available:
                return None
            response = self.session.get(f"{self.config['api_url']}/validation/quality-report", timeout=10)
            return response.json() if response.status_code == 200 else None
        except Exception as e:
            logger.warning(f"Could not fetch quality report: {e}")
            return None


    def get_monitoring_metrics_from_api(self):
        """Get current monitoring metrics from API"""
        try:
            if not self.api_available:
                return None
            response = self.session.get(f"{self.config['api_url']}/monitor/metrics/current", timeout=10)
            return response.json() if response.status_code == 200 else None
        except Exception as e:
            logger.warning(f"Could not fetch monitoring metrics: {e}")
            return None
    
    def get_monitoring_alerts_from_api(self):
        """Get monitoring alerts from API"""
        try:
            if not self.api_available:
                return None
            response = self.session.get(f"{self.config['api_url']}/monitor/alerts", timeout=10)
            return response.json() if response.status_code == 200 else None
        except Exception as e:
            logger.warning(f"Could not fetch monitoring alerts: {e}")
            return None
    
    def get_prediction_patterns_from_api(self, hours: int = 24):
        """Get prediction patterns from API"""
        try:
            if not self.api_available:
                return None
            response = self.session.get(f"{self.config['api_url']}/monitor/patterns?hours={hours}", timeout=10)
            return response.json() if response.status_code == 200 else None
        except Exception as e:
            logger.warning(f"Could not fetch prediction patterns: {e}")
            return None


    def get_automation_status_from_api(self):
        """Get automation status from API"""
        try:
            if not self.api_available:
                return None
            response = self.session.get(f"{self.config['api_url']}/automation/status", timeout=10)
            return response.json() if response.status_code == 200 else None
        except Exception as e:
            logger.warning(f"Could not fetch automation status: {e}")
            return None

    # Blue-Green Deployment
    def get_deployment_status_from_api(self):
        """Get deployment status from API"""
        try:
            if not self.api_available:
                return None
            response = self.session.get(f"{self.config['api_url']}/deployment/status", timeout=10)
            return response.json() if response.status_code == 200 else None
        except Exception as e:
            logger.warning(f"Could not fetch deployment status: {e}")
            return None
    
    def get_traffic_status_from_api(self):
        """Get traffic routing status from API"""
        try:
            if not self.api_available:
                return None
            response = self.session.get(f"{self.config['api_url']}/deployment/traffic", timeout=10)
            return response.json() if response.status_code == 200 else None
        except Exception as e:
            logger.warning(f"Could not fetch traffic status: {e}")
            return None


# Initialize app manager
app_manager = StreamlitAppManager()

# Page configuration
st.set_page_config(
    page_title="Fake News Detection System",
    page_icon="πŸ“°",
    layout="wide",
    initial_sidebar_state="expanded"
)

# Custom CSS for better styling
st.markdown("""
<style>
    .main-header {
        font-size: 3rem;
        font-weight: bold;
        text-align: center;
        color: #1f77b4;
        margin-bottom: 2rem;
    }
    
    .metric-card {
        background-color: #f0f2f6;
        padding: 1rem;
        border-radius: 0.5rem;
        border-left: 4px solid #1f77b4;
    }
    
    .success-message {
        background-color: #d4edda;
        color: #155724;
        padding: 1rem;
        border-radius: 0.5rem;
        border: 1px solid #c3e6cb;
    }
    
    .warning-message {
        background-color: #fff3cd;
        color: #856404;
        padding: 1rem;
        border-radius: 0.5rem;
        border: 1px solid #ffeaa7;
    }
    
    .error-message {
        background-color: #f8d7da;
        color: #721c24;
        padding: 1rem;
        border-radius: 0.5rem;
        border: 1px solid #f5c6cb;
    }
    
    .environment-info {
        background-color: #e7f3ff;
        color: #004085;
        padding: 1rem;
        border-radius: 0.5rem;
        border: 1px solid #b3d7ff;
        margin-bottom: 1rem;
    }
</style>
""", unsafe_allow_html=True)


def load_json_file(file_path: Path, default: Any = None) -> Any:
    """Safely load JSON file with error handling"""
    try:
        if file_path.exists():
            with open(file_path, 'r') as f:
                return json.load(f)
        return default or {}
    except Exception as e:
        logger.error(f"Failed to load {file_path}: {e}")
        return default or {}

def show_logs_section():
    """Display system logs in Streamlit"""
    st.subheader("System Logs")
    
    log_files = {
        "Activity Log": path_manager.get_activity_log_path(),
        "Prediction Log": path_manager.get_logs_path("prediction_log.json"),
        "Scheduler Log": path_manager.get_logs_path("scheduler_execution.json"),
        "Drift History": path_manager.get_logs_path("drift_history.json"),
        "Drift Alerts": path_manager.get_logs_path("drift_alerts.json"),
        "Prediction Monitor": path_manager.get_logs_path("monitor/predictions.json"),
        "Metrics Log": path_manager.get_logs_path("monitor/metrics.json"),
        "Alerts Log": path_manager.get_logs_path("monitor/alerts.json")
    }
    
    col1, col2 = st.columns([2, 1])
    
    with col1:
        selected_log = st.selectbox("Select log file:", list(log_files.keys()))
    
    with col2:
        max_entries = st.number_input("Max entries:", min_value=10, max_value=1000, value=50)
    
    if st.button("Load Log", type="primary"):
        log_path = log_files[selected_log]
        
        if log_path.exists():
            try:
                with open(log_path, 'r') as f:
                    log_data = json.load(f)
                
                if log_data:
                    st.info(f"Total entries: {len(log_data)}")
                    
                    if len(log_data) > max_entries:
                        log_data = log_data[-max_entries:]
                        st.warning(f"Showing last {max_entries} entries")
                    
                    with st.expander("Raw JSON Data"):
                        st.json(log_data)
                    
                    if isinstance(log_data, list) and log_data:
                        df = pd.DataFrame(log_data)
                        st.dataframe(df, use_container_width=True)
                else:
                    st.warning("Log file is empty")
                    
            except Exception as e:
                st.error(f"Error reading log: {e}")
        else:
            st.warning(f"Log file not found: {log_path}")

def render_cv_results_section():
    """Render cross-validation results section"""
    st.subheader("🎯 Cross-Validation Results")
    
    cv_results = app_manager.get_cv_results_from_api()
    
    if cv_results is None:
        st.warning("API not available - showing local CV results if available")
        
        # Try to load local metadata
        try:
            from path_config import path_manager
            metadata_path = path_manager.get_metadata_path()
            
            if metadata_path.exists():
                with open(metadata_path, 'r') as f:
                    metadata = json.load(f)
                    cv_results = {'cross_validation': metadata.get('cross_validation', {})}
            else:
                st.info("No local CV results found")
                return
        except Exception as e:
            st.error(f"Could not load local CV results: {e}")
            return
    
    if cv_results and 'error' not in cv_results:
        # Display model information
        if 'model_version' in cv_results:
            st.info(f"**Model Version:** {cv_results.get('model_version', 'Unknown')} | "
                   f"**Type:** {cv_results.get('model_type', 'Unknown')} | "
                   f"**Trained:** {cv_results.get('training_timestamp', 'Unknown')}")
        
        cv_data = cv_results.get('cross_validation', {})
        
        if cv_data:
            # CV Methodology
            methodology = cv_data.get('methodology', {})
            col1, col2, col3 = st.columns(3)
            
            with col1:
                st.metric("CV Folds", methodology.get('n_splits', 'Unknown'))
            with col2:
                st.metric("CV Type", methodology.get('cv_type', 'StratifiedKFold'))
            with col3:
                st.metric("Random State", methodology.get('random_state', 42))
            
            # Performance Metrics Summary
            st.subheader("πŸ“Š Performance Summary")
            
            test_scores = cv_data.get('test_scores', {})
            if test_scores:
                
                metrics_cols = st.columns(len(test_scores))
                for idx, (metric, scores) in enumerate(test_scores.items()):
                    with metrics_cols[idx]:
                        if isinstance(scores, dict):
                            mean_val = scores.get('mean', 0)
                            std_val = scores.get('std', 0)
                            st.metric(
                                f"{metric.upper()}",
                                f"{mean_val:.4f}",
                                delta=f"Β±{std_val:.4f}"
                            )
                
                # Detailed CV Scores Visualization
                st.subheader("πŸ“ˆ Cross-Validation Scores by Metric")
                
                # Create a comprehensive chart
                chart_data = []
                fold_results = cv_data.get('individual_fold_results', [])
                
                if fold_results:
                    for fold_result in fold_results:
                        fold_num = fold_result.get('fold', 0)
                        test_scores_fold = fold_result.get('test_scores', {})
                        
                        for metric, score in test_scores_fold.items():
                            chart_data.append({
                                'Fold': f"Fold {fold_num}",
                                'Metric': metric.upper(),
                                'Score': score,
                                'Type': 'Test'
                            })
                        
                        # Add train scores if available
                        train_scores_fold = fold_result.get('train_scores', {})
                        for metric, score in train_scores_fold.items():
                            chart_data.append({
                                'Fold': f"Fold {fold_num}",
                                'Metric': metric.upper(),
                                'Score': score,
                                'Type': 'Train'
                            })
                
                if chart_data:
                    df_cv = pd.DataFrame(chart_data)
                    
                    # Create separate charts for each metric
                    for metric in df_cv['Metric'].unique():
                        metric_data = df_cv[df_cv['Metric'] == metric]
                        
                        fig = px.bar(
                            metric_data,
                            x='Fold',
                            y='Score',
                            color='Type',
                            title=f'{metric} Scores Across CV Folds',
                            barmode='group'
                        )
                        
                        fig.update_layout(height=400)
                        st.plotly_chart(fig, use_container_width=True)
                
                # Performance Indicators
                st.subheader("πŸ” Model Quality Indicators")
                
                performance_indicators = cv_data.get('performance_indicators', {})
                col1, col2 = st.columns(2)
                
                with col1:
                    overfitting_score = performance_indicators.get('overfitting_score', 'Unknown')
                    if isinstance(overfitting_score, (int, float)):
                        if overfitting_score < 0.05:
                            st.success(f"**Overfitting Score:** {overfitting_score:.4f} (Low)")
                        elif overfitting_score < 0.15:
                            st.warning(f"**Overfitting Score:** {overfitting_score:.4f} (Moderate)")
                        else:
                            st.error(f"**Overfitting Score:** {overfitting_score:.4f} (High)")
                    else:
                        st.info(f"**Overfitting Score:** {overfitting_score}")
                
                with col2:
                    stability_score = performance_indicators.get('stability_score', 'Unknown')
                    if isinstance(stability_score, (int, float)):
                        if stability_score > 0.9:
                            st.success(f"**Stability Score:** {stability_score:.4f} (High)")
                        elif stability_score > 0.7:
                            st.warning(f"**Stability Score:** {stability_score:.4f} (Moderate)")
                        else:
                            st.error(f"**Stability Score:** {stability_score:.4f} (Low)")
                    else:
                        st.info(f"**Stability Score:** {stability_score}")
                
                # Statistical Validation Results
                if 'statistical_validation' in cv_results:
                    st.subheader("πŸ“ˆ Statistical Validation")
                    
                    stat_validation = cv_results['statistical_validation']
                    
                    for metric, validation_data in stat_validation.items():
                        if isinstance(validation_data, dict):
                            with st.expander(f"Statistical Tests - {metric.upper()}"):
                                
                                col1, col2 = st.columns(2)
                                
                                with col1:
                                    st.write(f"**Improvement:** {validation_data.get('improvement', 0):.4f}")
                                    st.write(f"**Effect Size:** {validation_data.get('effect_size', 0):.4f}")
                                
                                with col2:
                                    sig_improvement = validation_data.get('significant_improvement', False)
                                    if sig_improvement:
                                        st.success("**Significant Improvement:** Yes")
                                    else:
                                        st.info("**Significant Improvement:** No")
                                
                                # Display test results
                                tests = validation_data.get('tests', {})
                                if tests:
                                    st.write("**Statistical Test Results:**")
                                    for test_name, test_result in tests.items():
                                        if isinstance(test_result, dict):
                                            p_value = test_result.get('p_value', 1.0)
                                            significant = test_result.get('significant', False)
                                            
                                            status = "βœ… Significant" if significant else "❌ Not Significant"
                                            st.write(f"- {test_name}: p-value = {p_value:.4f} ({status})")
                
                # Promotion Validation
                if 'promotion_validation' in cv_results:
                    st.subheader("πŸš€ Model Promotion Validation")
                    
                    promotion_val = cv_results['promotion_validation']
                    
                    col1, col2, col3 = st.columns(3)
                    
                    with col1:
                        confidence = promotion_val.get('decision_confidence', 'Unknown')
                        if isinstance(confidence, (int, float)):
                            st.metric("Decision Confidence", f"{confidence:.2%}")
                        else:
                            st.metric("Decision Confidence", str(confidence))
                    
                    with col2:
                        st.write(f"**Promotion Reason:**")
                        st.write(promotion_val.get('promotion_reason', 'Unknown'))
                    
                    with col3:
                        st.write(f"**Comparison Method:**")
                        st.write(promotion_val.get('comparison_method', 'Unknown'))
                
                # Raw CV Data (expandable)
                with st.expander("πŸ” Detailed CV Data"):
                    st.json(cv_data)
                    
            else:
                st.info("No detailed CV test scores available")
        else:
            st.info("No cross-validation data available")
    else:
        error_msg = cv_results.get('error', 'Unknown error') if cv_results else 'No CV results available'
        st.warning(f"Cross-validation results not available: {error_msg}")

def render_validation_statistics_section():
    """Render validation statistics section"""
    st.subheader("πŸ“Š Data Validation Statistics")
    
    validation_stats = app_manager.get_validation_statistics_from_api()
    
    if validation_stats and validation_stats.get('statistics_available'):
        overall_metrics = validation_stats.get('overall_metrics', {})
        
        col1, col2, col3, col4 = st.columns(4)
        with col1:
            st.metric("Total Validations", overall_metrics.get('total_validations', 0))
        with col2:
            st.metric("Articles Processed", overall_metrics.get('total_articles_processed', 0))
        with col3:
            success_rate = overall_metrics.get('overall_success_rate', 0)
            st.metric("Success Rate", f"{success_rate:.1%}")
        with col4:
            quality_score = overall_metrics.get('average_quality_score', 0)
            st.metric("Avg Quality", f"{quality_score:.3f}")
    else:
        st.info("No validation statistics available yet. Please make predictions first to generate validation statistics")

def render_validation_quality_report():
    """Render validation quality report section"""
    st.subheader("πŸ“‹ Data Quality Report")
    
    quality_report = app_manager.get_validation_quality_report_from_api()
    
    if quality_report and 'error' not in quality_report:
        overall_stats = quality_report.get('overall_statistics', {})
        quality_assessment = quality_report.get('quality_assessment', {})
        
        col1, col2 = st.columns(2)
        with col1:
            st.metric("Total Articles", overall_stats.get('total_articles', 0))
            st.metric("Success Rate", f"{overall_stats.get('overall_success_rate', 0):.1%}")
        with col2:
            quality_level = quality_assessment.get('quality_level', 'unknown')
            if quality_level == 'excellent':
                st.success(f"Quality Level: {quality_level.title()}")
            elif quality_level == 'good':
                st.info(f"Quality Level: {quality_level.title()}")
            elif quality_level == 'fair':
                st.warning(f"Quality Level: {quality_level.title()}")
            else:
                st.error(f"Quality Level: {quality_level.title()}")
        
        recommendations = quality_report.get('recommendations', [])
        if recommendations:
            st.subheader("πŸ’‘ Recommendations")
            for i, rec in enumerate(recommendations, 1):
                st.write(f"{i}. {rec}")
    else:
        st.info("Quality report not available yet. Please make predictions first to generate data quality report")
    

def render_model_comparison_section():
    """Render model comparison results section"""
    st.subheader("βš–οΈ Model Comparison Results")
    
    comparison_results = app_manager.get_model_comparison_from_api()
    
    if comparison_results is None:
        st.warning("API not available - comparison results not accessible")
        return
    
    if comparison_results and 'error' not in comparison_results:
        
        # Comparison Summary
        summary = comparison_results.get('summary', {})
        models_compared = comparison_results.get('models_compared', {})
        
        st.info(f"**Comparison:** {models_compared.get('model1_name', 'Model 1')} vs "
                f"{models_compared.get('model2_name', 'Model 2')} | "
                f"**Timestamp:** {comparison_results.get('comparison_timestamp', 'Unknown')}")
        
        # Decision Summary
        col1, col2, col3 = st.columns(3)
        
        with col1:
            decision = summary.get('decision', False)
            if decision:
                st.success("**Decision:** Promote New Model")
            else:
                st.info("**Decision:** Keep Current Model")
        
        with col2:
            confidence = summary.get('confidence', 0)
            st.metric("Decision Confidence", f"{confidence:.2%}")
        
        with col3:
            st.write("**Reason:**")
            st.write(summary.get('reason', 'Unknown'))
        
        # Performance Comparison
        st.subheader("πŸ“Š Performance Comparison")
        
        prod_performance = comparison_results.get('model_performance', {}).get('production_model', {})
        cand_performance = comparison_results.get('model_performance', {}).get('candidate_model', {})
        
        # Create comparison chart
        if prod_performance.get('test_scores') and cand_performance.get('test_scores'):
            
            comparison_data = []
            
            prod_scores = prod_performance['test_scores']
            cand_scores = cand_performance['test_scores']
            
            for metric in set(prod_scores.keys()) & set(cand_scores.keys()):
                prod_mean = prod_scores[metric].get('mean', 0)
                cand_mean = cand_scores[metric].get('mean', 0)
                
                comparison_data.extend([
                    {'Model': 'Production', 'Metric': metric.upper(), 'Score': prod_mean},
                    {'Model': 'Candidate', 'Metric': metric.upper(), 'Score': cand_mean}
                ])
            
            if comparison_data:
                df_comparison = pd.DataFrame(comparison_data)
                
                fig = px.bar(
                    df_comparison,
                    x='Metric',
                    y='Score',
                    color='Model',
                    title='Model Performance Comparison',
                    barmode='group'
                )
                
                fig.update_layout(height=400)
                st.plotly_chart(fig, use_container_width=True)
        
        # Detailed Metric Comparisons
        st.subheader("πŸ” Detailed Metric Analysis")
        
        metric_comparisons = comparison_results.get('metric_comparisons', {})
        
        if metric_comparisons:
            for metric, comparison_data in metric_comparisons.items():
                if isinstance(comparison_data, dict):
                    
                    with st.expander(f"{metric.upper()} Analysis"):
                        
                        col1, col2, col3 = st.columns(3)
                        
                        with col1:
                            improvement = comparison_data.get('improvement', 0)
                            rel_improvement = comparison_data.get('relative_improvement', 0)
                            
                            if improvement > 0:
                                st.success(f"**Improvement:** +{improvement:.4f}")
                                st.success(f"**Relative:** +{rel_improvement:.2f}%")
                            else:
                                st.info(f"**Improvement:** {improvement:.4f}")
                                st.info(f"**Relative:** {rel_improvement:.2f}%")
                        
                        with col2:
                            effect_size = comparison_data.get('effect_size', 0)
                            
                            if abs(effect_size) > 0.8:
                                st.success(f"**Effect Size:** {effect_size:.4f} (Large)")
                            elif abs(effect_size) > 0.5:
                                st.warning(f"**Effect Size:** {effect_size:.4f} (Medium)")
                            else:
                                st.info(f"**Effect Size:** {effect_size:.4f} (Small)")
                        
                        with col3:
                            sig_improvement = comparison_data.get('significant_improvement', False)
                            practical_sig = comparison_data.get('practical_significance', False)
                            
                            if sig_improvement:
                                st.success("**Statistical Significance:** Yes")
                            else:
                                st.info("**Statistical Significance:** No")
                            
                            if practical_sig:
                                st.success("**Practical Significance:** Yes")
                            else:
                                st.info("**Practical Significance:** No")
                        
                        # Statistical test results
                        tests = comparison_data.get('tests', {})
                        if tests:
                            st.write("**Statistical Tests:**")
                            for test_name, test_result in tests.items():
                                if isinstance(test_result, dict):
                                    p_value = test_result.get('p_value', 1.0)
                                    significant = test_result.get('significant', False)
                                    
                                    status = "βœ…" if significant else "❌"
                                    st.write(f"- {test_name}: p = {p_value:.4f} {status}")
        
        # CV Methodology
        cv_methodology = comparison_results.get('cv_methodology', {})
        if cv_methodology:
            st.subheader("🎯 Cross-Validation Methodology")
            st.info(f"**CV Folds:** {cv_methodology.get('cv_folds', 'Unknown')} | "
                   f"**Session ID:** {comparison_results.get('session_id', 'Unknown')}")
        
        # Raw comparison data (expandable)
        with st.expander("πŸ” Raw Comparison Data"):
            st.json(comparison_results)
            
    else:
        error_msg = comparison_results.get('error', 'Unknown error') if comparison_results else 'No comparison results available'
        st.warning(f"Model comparison results not available: {error_msg}")
        

def save_prediction_to_history(text: str, prediction: str, confidence: float):
    """Save prediction to session history"""
    prediction_entry = {
        'timestamp': datetime.now().isoformat(),
        'text': text[:100] + "..." if len(text) > 100 else text,
        'prediction': prediction,
        'confidence': confidence,
        'text_length': len(text)
    }

    st.session_state.prediction_history.append(prediction_entry)

    # Keep only last 50 predictions
    if len(st.session_state.prediction_history) > 50:
        st.session_state.prediction_history = st.session_state.prediction_history[-50:]


def make_prediction_request(text: str) -> Dict[str, Any]:
    """Make prediction request to API"""
    try:
        if not app_manager.api_available:
            return {'error': 'API is not available'}

        response = app_manager.session.post(
            f"{app_manager.config['api_url']}/predict",
            json={"text": text},
            timeout=app_manager.config['prediction_timeout']
        )

        if response.status_code == 200:
            return response.json()
        else:
            return {'error': f'API Error: {response.status_code} - {response.text}'}

    except requests.exceptions.Timeout:
        return {'error': 'Request timed out. Please try again.'}
    except requests.exceptions.ConnectionError:
        return {'error': 'Cannot connect to prediction service.'}
    except Exception as e:
        return {'error': f'Unexpected error: {str(e)}'}


def validate_text_input(text: str) -> tuple[bool, str]:
    """Validate text input"""
    if not text or not text.strip():
        return False, "Please enter some text to analyze."

    if len(text) < 10:
        return False, "Text must be at least 10 characters long."

    if len(text) > app_manager.config['max_text_length']:
        return False, f"Text must be less than {app_manager.config['max_text_length']} characters."

    # Check for suspicious content
    suspicious_patterns = ['<script', 'javascript:', 'data:']
    if any(pattern in text.lower() for pattern in suspicious_patterns):
        return False, "Text contains suspicious content."

    return True, "Valid"


def create_confidence_gauge(confidence: float, prediction: str):
    """Create confidence gauge visualization"""
    fig = go.Figure(go.Indicator(
        mode="gauge+number+delta",
        value=confidence * 100,
        domain={'x': [0, 1], 'y': [0, 1]},
        title={'text': f"Confidence: {prediction}"},
        delta={'reference': 50},
        gauge={
            'axis': {'range': [None, 100]},
            'bar': {'color': "red" if prediction == "Fake" else "green"},
            'steps': [
                {'range': [0, 50], 'color': "lightgray"},
                {'range': [50, 80], 'color': "yellow"},
                {'range': [80, 100], 'color': "lightgreen"}
            ],
            'threshold': {
                'line': {'color': "black", 'width': 4},
                'thickness': 0.75,
                'value': 90
            }
        }
    ))

    fig.update_layout(height=300)
    return fig


def create_prediction_history_chart():
    """Create prediction history visualization"""
    if not st.session_state.prediction_history:
        return None

    df = pd.DataFrame(st.session_state.prediction_history)
    df['timestamp'] = pd.to_datetime(df['timestamp'])
    df['confidence_percent'] = df['confidence'] * 100

    fig = px.scatter(
        df,
        x='timestamp',
        y='confidence_percent',
        color='prediction',
        size='text_length',
        hover_data=['text'],
        title="Prediction History",
        labels={'confidence_percent': 'Confidence (%)', 'timestamp': 'Time'}
    )

    fig.update_layout(height=400)
    return fig

def create_cv_performance_chart(cv_results: dict) -> Optional[Any]:
    """Create a comprehensive CV performance visualization"""
    try:
        if not cv_results or 'cross_validation' not in cv_results:
            return None
        
        cv_data = cv_results['cross_validation']
        fold_results = cv_data.get('individual_fold_results', [])
        
        if not fold_results:
            return None
        
        # Prepare data for visualization
        chart_data = []
        
        for fold_result in fold_results:
            fold_num = fold_result.get('fold', 0)
            test_scores = fold_result.get('test_scores', {})
            train_scores = fold_result.get('train_scores', {})
            
            for metric, score in test_scores.items():
                chart_data.append({
                    'Fold': fold_num,
                    'Metric': metric.upper(),
                    'Score': score,
                    'Type': 'Test',
                    'Fold_Label': f"Fold {fold_num}"
                })
            
            for metric, score in train_scores.items():
                chart_data.append({
                    'Fold': fold_num,
                    'Metric': metric.upper(), 
                    'Score': score,
                    'Type': 'Train',
                    'Fold_Label': f"Fold {fold_num}"
                })
        
        if not chart_data:
            return None
        
        df_cv = pd.DataFrame(chart_data)
        
        # Create faceted chart showing all metrics
        fig = px.box(
            df_cv[df_cv['Type'] == 'Test'],  # Focus on test scores
            x='Metric',
            y='Score',
            title='Cross-Validation Performance Distribution',
            points='all'
        )
        
        # Add mean lines
        for metric in df_cv['Metric'].unique():
            metric_data = df_cv[(df_cv['Metric'] == metric) & (df_cv['Type'] == 'Test')]
            mean_score = metric_data['Score'].mean()
            
            fig.add_hline(
                y=mean_score,
                line_dash="dash",
                line_color="red",
                annotation_text=f"Mean: {mean_score:.3f}"
            )
        
        fig.update_layout(
            height=500,
            showlegend=True
        )
        
        return fig
        
    except Exception as e:
        logger.error(f"Failed to create CV chart: {e}")
        return None


def render_environment_info():
    """Render environment information"""
    env_info = path_manager.get_environment_info()
    
    # st.markdown(f"""
    # <div class="environment-info">
    #     <h4>🌍 Environment Information</h4>
    #     <p><strong>Environment:</strong> {env_info['environment']}</p>
    #     <p><strong>Base Directory:</strong> {env_info['base_dir']}</p>
    #     <p><strong>Data Directory:</strong> {env_info['data_dir']}</p>
    #     <p><strong>Model Directory:</strong> {env_info['model_dir']}</p>
    # </div>
    # """, unsafe_allow_html=True)


# Main application
def main():
    """Main Streamlit application"""

    # Header
    st.markdown('<h1 class="main-header">πŸ“° Fake News Detection System</h1>',
                unsafe_allow_html=True)

    # Environment info
    render_environment_info()

    # API Status indicator
    col1, col2, col3 = st.columns([1, 2, 1])
    with col2:
        if app_manager.api_available:
            st.write("")
            st.markdown(
                '<div class="success-message">🟒 API Service: Online</div>', unsafe_allow_html=True)
            st.write("")
        else:
            st.write("")
            st.markdown(
                '<div class="error-message">πŸ”΄ API Service: Offline</div>', unsafe_allow_html=True)
            st.write("")

    # Main content area
    tab1, tab2, tab3, tab4, tab5, tab6, tab7 = st.tabs([
        "πŸ” Prediction",
        "πŸ“Š Batch Analysis", 
        "πŸ“ˆ Analytics",
        "🎯 Model Training",
        "πŸ“‹ Logs",
        "βš™οΈ System Status",
        "πŸ“Š Monitoring"  # New monitoring tab
    ])


    # Tab 1: Individual Prediction
    with tab1:
        st.header("Single Text Analysis")

        # Input methods
        input_method = st.radio(
            "Choose input method:",
            ["Type Text", "Upload File"],
            horizontal=True
        )

        user_text = ""

        if input_method == "Type Text":
            user_text = st.text_area(
                "Enter news article text:",
                height=200,
                placeholder="Paste or type the news article you want to analyze..."
            )

        else:  # Upload File
            uploaded_file = st.file_uploader(
                "Upload text file:",
                type=['txt', 'csv'],
                help="Upload a text file containing the article to analyze"
            )

            if uploaded_file:
                try:
                    if uploaded_file.type == "text/plain":
                        user_text = str(uploaded_file.read(), "utf-8")
                    elif uploaded_file.type == "text/csv":
                        df = pd.read_csv(uploaded_file)
                        if 'text' in df.columns:
                            user_text = df['text'].iloc[0] if len(
                                df) > 0 else ""
                        else:
                            st.error("CSV file must contain a 'text' column")

                    st.success(
                        f"File uploaded successfully! ({len(user_text)} characters)")

                except Exception as e:
                    st.error(f"Error reading file: {e}")

        # Prediction section
        col1, col2 = st.columns([3, 1])

        with col1:
            if st.button("🧠 Analyze Text", type="primary", use_container_width=True):
                if user_text:
                    # Validate input
                    is_valid, validation_message = validate_text_input(
                        user_text)

                    if not is_valid:
                        st.error(validation_message)
                    else:
                        # Show progress
                        with st.spinner("Analyzing text..."):
                            result = make_prediction_request(user_text)

                        if 'error' in result:
                            st.error(f"❌ {result['error']}")
                        else:
                            # Display results
                            prediction = result['prediction']
                            confidence = result['confidence']

                            # Save to history
                            save_prediction_to_history(
                                user_text, prediction, confidence)

                            # Results display
                            col_result1, col_result2 = st.columns(2)

                            with col_result1:
                                if prediction == "Fake":
                                    st.markdown(f"""
                                    <div class="error-message">
                                        <h3>🚨 Prediction: FAKE NEWS</h3>
                                        <p>Confidence: {confidence:.2%}</p>
                                    </div>
                                    """, unsafe_allow_html=True)
                                else:
                                    st.markdown(f"""
                                    <div class="success-message">
                                        <h3>βœ… Prediction: REAL NEWS</h3>
                                        <p>Confidence: {confidence:.2%}</p>
                                    </div>
                                    """, unsafe_allow_html=True)

                            with col_result2:
                                # Confidence gauge
                                fig_gauge = create_confidence_gauge(
                                    confidence, prediction)
                                st.plotly_chart(
                                    fig_gauge, use_container_width=True)

                            # Additional information
                            with st.expander("πŸ“‹ Analysis Details"):
                                st.json({
                                    "model_version": result.get('model_version', 'Unknown'),
                                    "processing_time": f"{result.get('processing_time', 0):.3f} seconds",
                                    "timestamp": result.get('timestamp', ''),
                                    "text_length": len(user_text),
                                    "word_count": len(user_text.split()),
                                    "environment": path_manager.environment
                                })
                else:
                    st.warning("Please enter text to analyze.")

        with col2:
            if st.button("πŸ”„ Clear Text", use_container_width=True):
                st.rerun()

    # Tab 2: Batch Analysis (simplified for space)
    with tab2:
        st.header("Batch Text Analysis")
        
        # File upload for batch processing
        batch_file = st.file_uploader(
            "Upload CSV file for batch analysis:",
            type=['csv'],
            help="CSV file should contain a 'text' column with articles to analyze"
        )

        if batch_file:
            try:
                df = pd.read_csv(batch_file)

                if 'text' not in df.columns:
                    st.error("CSV file must contain a 'text' column")
                else:
                    st.success(f"File loaded: {len(df)} articles found")

                    # Preview data
                    st.subheader("Data Preview")
                    st.dataframe(df.head(10))

                    # Batch processing
                    if st.button("πŸš€ Process Batch", type="primary"):
                        if len(df) > app_manager.config['max_batch_size']:
                            st.warning(
                                f"Only processing first {app_manager.config['max_batch_size']} articles")
                            df = df.head(app_manager.config['max_batch_size'])

                        progress_bar = st.progress(0)
                        status_text = st.empty()
                        results = []

                        for i, row in df.iterrows():
                            status_text.text(
                                f"Processing article {i+1}/{len(df)}...")
                            progress_bar.progress((i + 1) / len(df))

                            result = make_prediction_request(row['text'])

                            if 'error' not in result:
                                results.append({
                                    'text': row['text'][:100] + "...",
                                    'prediction': result['prediction'],
                                    'confidence': result['confidence'],
                                    'processing_time': result.get('processing_time', 0)
                                })
                            else:
                                results.append({
                                    'text': row['text'][:100] + "...",
                                    'prediction': 'Error',
                                    'confidence': 0,
                                    'processing_time': 0
                                })

                        # Display results
                        results_df = pd.DataFrame(results)

                        # Summary statistics
                        col1, col2, col3, col4 = st.columns(4)

                        with col1:
                            st.metric("Total Processed", len(results_df))

                        with col2:
                            fake_count = len(
                                results_df[results_df['prediction'] == 'Fake'])
                            st.metric("Fake News", fake_count)

                        with col3:
                            real_count = len(
                                results_df[results_df['prediction'] == 'Real'])
                            st.metric("Real News", real_count)

                        with col4:
                            avg_confidence = results_df['confidence'].mean()
                            st.metric("Avg Confidence",
                                      f"{avg_confidence:.2%}")

                        # Results visualization
                        if len(results_df) > 0:
                            fig = px.histogram(
                                results_df,
                                x='prediction',
                                color='prediction',
                                title="Batch Analysis Results"
                            )
                            st.plotly_chart(fig, use_container_width=True)

                        # Download results
                        csv_buffer = io.StringIO()
                        results_df.to_csv(csv_buffer, index=False)

                        st.download_button(
                            label="πŸ“₯ Download Results",
                            data=csv_buffer.getvalue(),
                            file_name=f"batch_analysis_{datetime.now().strftime('%Y%m%d_%H%M%S')}.csv",
                            mime="text/csv"
                        )

            except Exception as e:
                st.error(f"Error processing file: {e}")

    # Tab 3: Analytics
    with tab3:
        st.header("System Analytics")
        
        # Add CV and Model Comparison sections
        col1, col2 = st.columns([1, 1])
        
        with col1:
            if st.button("πŸ”„ Refresh CV Results", use_container_width=True):
                st.rerun()
        
        with col2:
            show_detailed_cv = st.checkbox("Show Detailed CV Analysis", value=True)
        
        if show_detailed_cv:
            # Render cross-validation results
            render_cv_results_section()
            
            # Add separator
            st.divider()
            
            # Render model comparison results
            render_model_comparison_section()
            
            # Add separator
            st.divider()
    
        # Prediction history (existing content)
        if st.session_state.prediction_history:
            st.subheader("Recent Predictions")
    
            # History chart
            fig_history = create_prediction_history_chart()
            if fig_history:
                st.plotly_chart(fig_history, use_container_width=True)
    
            # History table
            history_df = pd.DataFrame(st.session_state.prediction_history)
            st.dataframe(history_df.tail(20), use_container_width=True)
    
        else:
            st.info(
                "No prediction history available. Make some predictions to see analytics.")
    
        # System metrics (existing content with CV enhancement)
        st.subheader("System Metrics")
    
        # Load various log files for analytics
        try:
            # API health check with CV information
            if app_manager.api_available:
                response = app_manager.session.get(
                    f"{app_manager.config['api_url']}/metrics")
                if response.status_code == 200:
                    metrics = response.json()
    
                    # Basic metrics
                    api_metrics = metrics.get('api_metrics', {})
                    model_info = metrics.get('model_info', {})
                    cv_summary = metrics.get('cross_validation_summary', {})
    
                    col1, col2, col3, col4 = st.columns(4)
    
                    with col1:
                        st.metric("Total API Requests",
                                  api_metrics.get('total_requests', 0))
    
                    with col2:
                        st.metric("Unique Clients", 
                                  api_metrics.get('unique_clients', 0))
    
                    with col3:
                        st.metric("Model Version", 
                                  model_info.get('model_version', 'Unknown'))
    
                    with col4:
                        status = model_info.get('model_health', 'unknown')
                        st.metric("Model Status", status)
    
                    # Cross-validation summary metrics
                    if cv_summary.get('cv_available', False):
                        st.subheader("Cross-Validation Summary")
                        
                        cv_col1, cv_col2, cv_col3, cv_col4 = st.columns(4)
                        
                        with cv_col1:
                            cv_folds = cv_summary.get('cv_folds', 'Unknown')
                            st.metric("CV Folds", cv_folds)
                        
                        with cv_col2:
                            cv_f1 = cv_summary.get('cv_f1_mean')
                            cv_f1_std = cv_summary.get('cv_f1_std')
                            if cv_f1 is not None and cv_f1_std is not None:
                                st.metric("CV F1 Score", f"{cv_f1:.4f}", f"Β±{cv_f1_std:.4f}")
                            else:
                                st.metric("CV F1 Score", "N/A")
                        
                        with cv_col3:
                            cv_acc = cv_summary.get('cv_accuracy_mean')
                            cv_acc_std = cv_summary.get('cv_accuracy_std')
                            if cv_acc is not None and cv_acc_std is not None:
                                st.metric("CV Accuracy", f"{cv_acc:.4f}", f"Β±{cv_acc_std:.4f}")
                            else:
                                st.metric("CV Accuracy", "N/A")
                        
                        with cv_col4:
                            overfitting = cv_summary.get('overfitting_score')
                            if overfitting is not None:
                                if overfitting < 0.05:
                                    st.metric("Overfitting", f"{overfitting:.4f}", "Low", delta_color="normal")
                                elif overfitting < 0.15:
                                    st.metric("Overfitting", f"{overfitting:.4f}", "Moderate", delta_color="off")
                                else:
                                    st.metric("Overfitting", f"{overfitting:.4f}", "High", delta_color="inverse")
                            else:
                                st.metric("Overfitting", "N/A")
    
                    # Environment details
                    st.subheader("Environment Details")
                    env_info = metrics.get('environment_info', {})
                    env_data = env_info.get('environment', 'Unknown')
                    st.info(f"Running in: {env_data}")
                    
                    # Available files
                    datasets = env_info.get('available_datasets', {})
                    models = env_info.get('available_models', {})
                    
                    col1, col2 = st.columns(2)
                    with col1:
                        st.write("**Available Datasets:**")
                        for name, exists in datasets.items():
                            status = "βœ…" if exists else "❌"
                            st.write(f"{status} {name}")
                    
                    with col2:
                        st.write("**Available Models:**")
                        for name, exists in models.items():
                            status = "βœ…" if exists else "❌"
                            st.write(f"{status} {name}")
    
        except Exception as e:
            st.warning(f"Could not load API metrics: {e}")

    # Tab 4: Model Training  
    with tab4:
        st.header("Custom Model Training")

        st.info("Upload your own dataset to retrain the model with custom data.")

        # File upload for training
        training_file = st.file_uploader(
            "Upload training dataset (CSV):",
            type=['csv'],
            help="CSV file should contain 'text' and 'label' columns (label: 0=Real, 1=Fake)"
        )

        if training_file:
            try:
                df_train = pd.read_csv(training_file)

                required_columns = ['text', 'label']
                missing_columns = [
                    col for col in required_columns if col not in df_train.columns]

                if missing_columns:
                    st.error(f"Missing required columns: {missing_columns}")
                else:
                    st.success(
                        f"Training file loaded: {len(df_train)} samples")

                    # Data validation
                    label_counts = df_train['label'].value_counts()

                    col1, col2 = st.columns(2)

                    with col1:
                        st.subheader("Dataset Overview")
                        st.write(f"Total samples: {len(df_train)}")
                        st.write(f"Real news (0): {label_counts.get(0, 0)}")
                        st.write(f"Fake news (1): {label_counts.get(1, 0)}")

                    with col2:
                        # Label distribution chart
                        fig_labels = px.pie(
                            values=label_counts.values,
                            names=['Real', 'Fake'],
                            title="Label Distribution"
                        )
                        st.plotly_chart(fig_labels)

                    # Training options
                    st.subheader("Training Configuration")

                    col1, col2 = st.columns(2)

                    with col1:
                        test_size = st.slider("Test Size", 0.1, 0.4, 0.2, 0.05)
                        max_features = st.number_input(
                            "Max Features", 1000, 20000, 10000, 1000)

                    with col2:
                        cross_validation = st.checkbox(
                            "Cross Validation", value=True)
                        hyperparameter_tuning = st.checkbox(
                            "Hyperparameter Tuning", value=False)

                    # Start training
                    if st.button("πŸƒβ€β™‚οΈ Start Training", type="primary"):
                        # Save training data to the appropriate location
                        custom_data_path = path_manager.get_data_path('custom_upload.csv')
                        custom_data_path.parent.mkdir(parents=True, exist_ok=True)
                        df_train.to_csv(custom_data_path, index=False)

                        # Progress simulation
                        progress_bar = st.progress(0)
                        status_text = st.empty()

                        training_steps = [
                            "Preprocessing data...",
                            "Splitting dataset...",
                            "Training model...",
                            "Evaluating performance...",
                            "Saving model..."
                        ]

                        for i, step in enumerate(training_steps):
                            status_text.text(step)
                            progress_bar.progress(
                                (i + 1) / len(training_steps))
                            time.sleep(2)  # Simulate processing time

                        # Run actual training
                        try:
                            result = subprocess.run(
                                [sys.executable, str(path_manager.get_model_path() / "train.py"),
                                 "--data_path", str(custom_data_path)],
                                capture_output=True,
                                text=True,
                                timeout=1800,
                                cwd=str(path_manager.base_paths['base'])
                            )

                            if result.returncode == 0:
                                st.success(
                                    "πŸŽ‰ Training completed successfully!")

                                # Try to extract accuracy from output
                                try:
                                    output_lines = result.stdout.strip().split('\n')
                                    for line in output_lines:
                                        if 'accuracy' in line.lower():
                                            st.info(
                                                f"Model performance: {line}")
                                except:
                                    pass

                                # Reload API model
                                if app_manager.api_available:
                                    try:
                                        reload_response = app_manager.session.post(
                                            f"{app_manager.config['api_url']}/model/reload"
                                        )
                                        if reload_response.status_code == 200:
                                            st.success(
                                                "βœ… Model reloaded in API successfully!")
                                    except:
                                        st.warning(
                                            "⚠️ Model trained but API reload failed")

                            else:
                                st.error(f"Training failed: {result.stderr}")

                        except subprocess.TimeoutExpired:
                            st.error(
                                "Training timed out. Please try with a smaller dataset.")
                        except Exception as e:
                            st.error(f"Training error: {e}")

            except Exception as e:
                st.error(f"Error loading training file: {e}")

    # Tab 5: Logs
    with tab5:
        show_logs_section()

    # Tab 6: System Status
    with tab6:
        render_system_status()

    # Tab 7: Monitoring
    with tab7:
        st.header("Real-time System Monitoring")
        
        col1, col2 = st.columns([1, 1])
        with col1:
            if st.button("πŸ”„ Refresh Monitoring", use_container_width=True):
                st.rerun()
        
        render_monitoring_dashboard()
        st.divider()
        render_monitoring_alerts()
        st.divider()
        render_automation_status()
        st.divider()
        render_deployment_status()

def render_system_status():
    """Render system status tab"""
    st.header("System Status & Monitoring")

    # Auto-refresh toggle
    col1, col2 = st.columns([1, 4])
    with col1:
        st.session_state.auto_refresh = st.checkbox(
            "Auto Refresh", value=st.session_state.auto_refresh)

    with col2:
        if st.button("πŸ”„ Refresh Now"):
            st.session_state.last_refresh = datetime.now()
            st.rerun()


    # Environment Information
    st.subheader("🌍 Environment Information")
    env_info = path_manager.get_environment_info()
    
    col1, col2 = st.columns(2)
    with col1:
        st.write(f"**Environment:** {env_info['environment']}")
        st.write(f"**Base Directory:** {env_info['base_dir']}")
        st.write(f"**Working Directory:** {env_info.get('current_working_directory', 'N/A')}")
        
    with col2:
        st.write(f"**Data Directory:** {env_info['data_dir']}")
        st.write(f"**Model Directory:** {env_info['model_dir']}")
        st.write(f"**Logs Directory:** {env_info.get('logs_dir', 'N/A')}")

    # System health overview
    st.subheader("πŸ₯ System Health")

    if app_manager.api_available:
        try:
            health_response = app_manager.session.get(
                f"{app_manager.config['api_url']}/health")
            if health_response.status_code == 200:
                health_data = health_response.json()

                # Overall status
                overall_status = health_data.get('status', 'unknown')
                if overall_status == 'healthy':
                    st.success("🟒 System Status: Healthy")
                else:
                    st.error("πŸ”΄ System Status: Unhealthy")

                # Basic health display
                col1, col2, col3 = st.columns(3)
                with col1:
                    st.subheader("πŸ€– Model Health")
                    model_health = health_data.get('model_health', {})
                    for key, value in model_health.items():
                        if key not in ['test_prediction', 'model_path', 'data_path', 'environment']:
                            display_key = key.replace('_', ' ').title()
                            if isinstance(value, bool):
                                status = "βœ…" if value else "❌"
                                st.write(f"**{display_key}:** {status}")
                            else:
                                st.write(f"**{display_key}:** {value}")

        except Exception as e:
            st.error(f"Failed to get health status: {e}")
    else:
        st.error("πŸ”΄ API Service is not available")

    # Add the validation sections as specified in the document
    st.divider()
    render_validation_statistics_section()
    st.divider() 
    render_validation_quality_report()

    # Model information
    st.subheader("🎯 Model Information")
    metadata = load_json_file(path_manager.get_metadata_path(), {})
    if metadata:
        col1, col2 = st.columns(2)
        with col1:
            for key in ['model_version', 'test_accuracy', 'test_f1', 'model_type']:
                if key in metadata:
                    display_key = key.replace('_', ' ').title()
                    value = metadata[key]
                    if isinstance(value, float):
                        st.metric(display_key, f"{value:.4f}")
                    else:
                        st.metric(display_key, str(value))
        with col2:
            for key in ['train_size', 'timestamp', 'environment']:
                if key in metadata:
                    display_key = key.replace('_', ' ').title()
                    value = metadata[key]
                    if key == 'timestamp':
                        try:
                            dt = datetime.fromisoformat(value.replace('Z', '+00:00'))
                            value = dt.strftime('%Y-%m-%d %H:%M:%S')
                        except:
                            pass
                    st.write(f"**{display_key}:** {value}")
    else:
        st.warning("No model metadata available")


        
def render_monitoring_dashboard():
    """Render real-time monitoring dashboard"""
    st.subheader("πŸ“Š Real-time Monitoring Dashboard")
    
    monitoring_data = app_manager.get_monitoring_metrics_from_api()
    
    if monitoring_data:
        # Current metrics display
        col1, col2, col3, col4 = st.columns(4)
        
        pred_metrics = monitoring_data.get('prediction_metrics', {})
        system_metrics = monitoring_data.get('system_metrics', {})
        api_metrics = monitoring_data.get('api_metrics', {})
        
        with col1:
            st.metric("Predictions/Min", f"{pred_metrics.get('predictions_per_minute', 0):.1f}")
            st.metric("Avg Confidence", f"{pred_metrics.get('avg_confidence', 0):.2f}")
        
        with col2:
            st.metric("Response Time", f"{api_metrics.get('avg_response_time', 0):.2f}s")
            st.metric("Error Rate", f"{api_metrics.get('error_rate', 0):.1%}")
        
        with col3:
            st.metric("CPU Usage", f"{system_metrics.get('cpu_percent', 0):.1f}%")
            st.metric("Memory Usage", f"{system_metrics.get('memory_percent', 0):.1f}%")
        
        with col4:
            anomaly_score = pred_metrics.get('anomaly_score', 0)
            st.metric("Anomaly Score", f"{anomaly_score:.3f}")
            if anomaly_score > 0.3:
                st.warning("High anomaly score detected!")
    else:
        st.warning("Monitoring data not available")

def render_monitoring_alerts():
    """Render monitoring alerts section"""
    st.subheader("🚨 Active Alerts")
    
    alerts_data = app_manager.get_monitoring_alerts_from_api()
    
    if alerts_data:
        active_alerts = alerts_data.get('active_alerts', [])
        alert_stats = alerts_data.get('alert_statistics', {})
        
        # Alert statistics
        col1, col2, col3 = st.columns(3)
        with col1:
            st.metric("Active Alerts", alert_stats.get('active_alerts', 0))
        with col2:
            st.metric("Critical Alerts", alert_stats.get('critical_alerts_active', 0))
        with col3:
            st.metric("24h Alert Rate", f"{alert_stats.get('alert_rate_per_hour', 0):.1f}/hr")
        
        # Active alerts display
        if active_alerts:
            for alert in active_alerts:
                alert_type = alert.get('type', 'info')
                if alert_type == 'critical':
                    st.error(f"πŸ”΄ **{alert.get('title', 'Unknown')}**: {alert.get('message', '')}")
                elif alert_type == 'warning':
                    st.warning(f"🟑 **{alert.get('title', 'Unknown')}**: {alert.get('message', '')}")
                else:
                    st.info(f"πŸ”΅ **{alert.get('title', 'Unknown')}**: {alert.get('message', '')}")
        else:
            st.success("No active alerts")
    else:
        st.warning("Alert data not available")


def render_automation_status():
    """Render automation system status"""
    st.subheader("πŸ€– Automated Retraining Status")
    
    automation_data = app_manager.get_automation_status_from_api()
    
    if automation_data:
        automation_system = automation_data.get('automation_system', {})
        
        col1, col2, col3 = st.columns(3)
        with col1:
            st.metric("Monitoring Active", "Yes" if automation_system.get('monitoring_active') else "No")
        with col2:
            st.metric("Total Auto Trainings", automation_system.get('total_automated_trainings', 0))
        with col3:
            st.metric("Queued Jobs", automation_system.get('queued_jobs', 0))
        
        if automation_system.get('last_automated_training'):
            st.info(f"Last automated training: {automation_system['last_automated_training']}")
        
        if automation_system.get('in_cooldown'):
            st.warning("System in cooldown period")
    else:
        st.warning("Automation status not available")


def render_deployment_status():
    """Render deployment system status"""
    st.subheader("πŸš€ Blue-Green Deployment Status")
    
    deployment_data = app_manager.get_deployment_status_from_api()
    traffic_data = app_manager.get_traffic_status_from_api()
    
    if deployment_data:
        current_deployment = deployment_data.get('current_deployment')
        active_version = deployment_data.get('active_version')
        traffic_split = deployment_data.get('traffic_split', {})
        
        col1, col2, col3 = st.columns(3)
        with col1:
            st.metric("Active Version", active_version['version_id'] if active_version else "None")
        with col2:
            st.metric("Blue Traffic", f"{traffic_split.get('blue', 0)}%")
        with col3:
            st.metric("Green Traffic", f"{traffic_split.get('green', 0)}%")
        
        if current_deployment:
            st.info(f"Current deployment: {current_deployment['deployment_id']} ({current_deployment['status']})")
    else:
        st.warning("Deployment status not available")

# Auto-refresh logic
if st.session_state.auto_refresh:
    time_since_refresh = datetime.now() - st.session_state.last_refresh
    if time_since_refresh > timedelta(seconds=app_manager.config['refresh_interval']):
        st.session_state.last_refresh = datetime.now()
        st.rerun()
        
# Run main application
if __name__ == "__main__":
    main()