Commit
Β·
2179021
1
Parent(s):
a12e15f
Update app/streamlit_app.py
Browse files- app/streamlit_app.py +136 -136
app/streamlit_app.py
CHANGED
|
@@ -1,136 +1,136 @@
|
|
| 1 |
-
# app/streamlit_app.py
|
| 2 |
-
|
| 3 |
-
import streamlit as st
|
| 4 |
-
import requests
|
| 5 |
-
import json
|
| 6 |
-
import pandas as pd
|
| 7 |
-
import altair as alt
|
| 8 |
-
import time
|
| 9 |
-
import subprocess
|
| 10 |
-
import sys
|
| 11 |
-
from pathlib import Path
|
| 12 |
-
|
| 13 |
-
# Add root to sys.path for imports if needed
|
| 14 |
-
sys.path.append(str(Path(__file__).resolve().parent.parent))
|
| 15 |
-
|
| 16 |
-
# ---- Constants ----
|
| 17 |
-
# API_URL = "http://127.0.0.1:8000/predict"
|
| 18 |
-
API_URL = "http://localhost:8000/predict"
|
| 19 |
-
CUSTOM_DATA_PATH = Path(__file__).parent.parent / "data" / "custom_upload.csv"
|
| 20 |
-
METADATA_PATH = Path(__file__).parent.parent / "model" / "metadata.json"
|
| 21 |
-
ACTIVITY_LOG_PATH = Path(__file__).parent.parent / "logs" / "activity_log.json"
|
| 22 |
-
DRIFT_LOG_PATH = Path(__file__).parent.parent / "logs" / "monitoring_log.json"
|
| 23 |
-
|
| 24 |
-
# ---- Streamlit UI ----
|
| 25 |
-
st.set_page_config(page_title="Fake News Detector", layout="centered")
|
| 26 |
-
st.title("π° Fake News Detector")
|
| 27 |
-
st.markdown("Enter a news article's headline or content to predict if it's **Fake** or **Real**.")
|
| 28 |
-
|
| 29 |
-
# ---- Prediction Form ----
|
| 30 |
-
with st.form(key="predict_form"):
|
| 31 |
-
user_input = st.text_area("News Text", height=150)
|
| 32 |
-
submit = st.form_submit_button("π§ Predict")
|
| 33 |
-
|
| 34 |
-
if submit:
|
| 35 |
-
if not user_input.strip():
|
| 36 |
-
st.warning("Please enter some text.")
|
| 37 |
-
else:
|
| 38 |
-
try:
|
| 39 |
-
response = requests.post(API_URL, json={"text": user_input})
|
| 40 |
-
if response.status_code == 200:
|
| 41 |
-
result = response.json()
|
| 42 |
-
pred = result["prediction"]
|
| 43 |
-
prob = result["confidence"]
|
| 44 |
-
st.success(f"π§Ύ Prediction: **{pred}**")
|
| 45 |
-
st.info(f"π Confidence: {prob * 100:.2f}%")
|
| 46 |
-
else:
|
| 47 |
-
st.error(f"API Error: {response.status_code}")
|
| 48 |
-
except Exception as e:
|
| 49 |
-
st.error(f"β Failed to connect to FastAPI: {e}")
|
| 50 |
-
|
| 51 |
-
# ---- Upload + Train ----
|
| 52 |
-
st.header("π€ Train with Your Own CSV")
|
| 53 |
-
|
| 54 |
-
with st.expander("Upload CSV to Retrain Model (columns: `text`, `label`)"):
|
| 55 |
-
uploaded_file = st.file_uploader("Choose a CSV file", type=["csv"])
|
| 56 |
-
if uploaded_file:
|
| 57 |
-
try:
|
| 58 |
-
df_custom = pd.read_csv(uploaded_file)
|
| 59 |
-
if "text" not in df_custom.columns or "label" not in df_custom.columns:
|
| 60 |
-
st.error("CSV must contain 'text' and 'label' columns.")
|
| 61 |
-
else:
|
| 62 |
-
st.success("β
File looks good. Starting training...")
|
| 63 |
-
|
| 64 |
-
# Save CSV
|
| 65 |
-
df_custom.to_csv(CUSTOM_DATA_PATH, index=False)
|
| 66 |
-
|
| 67 |
-
# Progress bar animation
|
| 68 |
-
progress_bar = st.progress(0)
|
| 69 |
-
status_text = st.empty()
|
| 70 |
-
for percent in range(0, 101, 10):
|
| 71 |
-
progress_bar.progress(percent)
|
| 72 |
-
status_text.text(f"Training Progress: {percent}%")
|
| 73 |
-
time.sleep(0.2)
|
| 74 |
-
|
| 75 |
-
# Trigger training subprocess
|
| 76 |
-
result = subprocess.run(
|
| 77 |
-
[sys.executable, "model/train.py", "--data_path", str(CUSTOM_DATA_PATH), "--output_path", "model/custom_model.pt"],
|
| 78 |
-
capture_output=True, text=True
|
| 79 |
-
)
|
| 80 |
-
|
| 81 |
-
if result.returncode == 0:
|
| 82 |
-
acc = float(result.stdout.strip())
|
| 83 |
-
new_version = "custom_" + time.strftime("%H%M%S")
|
| 84 |
-
metadata = {
|
| 85 |
-
"model_version": new_version,
|
| 86 |
-
"test_accuracy": round(acc, 4),
|
| 87 |
-
"timestamp": time.strftime("%Y-%m-%dT%H:%M:%S")
|
| 88 |
-
}
|
| 89 |
-
with open(METADATA_PATH, "w") as f:
|
| 90 |
-
json.dump(metadata, f, indent=2)
|
| 91 |
-
status_text.text("π Training complete!")
|
| 92 |
-
st.success(f"New model trained with accuracy: {acc:.4f}")
|
| 93 |
-
else:
|
| 94 |
-
st.error("Training failed.")
|
| 95 |
-
st.text(result.stderr)
|
| 96 |
-
except Exception as e:
|
| 97 |
-
st.error(f"Error reading file: {e}")
|
| 98 |
-
|
| 99 |
-
# ---- Sidebar Info ----
|
| 100 |
-
st.sidebar.header("π Model Info")
|
| 101 |
-
if METADATA_PATH.exists():
|
| 102 |
-
with open(METADATA_PATH) as f:
|
| 103 |
-
meta = json.load(f)
|
| 104 |
-
st.sidebar.markdown(f"**Version**: `{meta['model_version']}`")
|
| 105 |
-
st.sidebar.markdown(f"**Accuracy**: `{meta['test_accuracy']}`")
|
| 106 |
-
st.sidebar.markdown(f"**Updated**: `{meta['timestamp'].split('T')[0]}`")
|
| 107 |
-
else:
|
| 108 |
-
st.sidebar.warning("No metadata found.")
|
| 109 |
-
|
| 110 |
-
# ---- Activity Log ----
|
| 111 |
-
st.sidebar.header("π Activity Log")
|
| 112 |
-
if ACTIVITY_LOG_PATH.exists():
|
| 113 |
-
with open(ACTIVITY_LOG_PATH) as f:
|
| 114 |
-
activity_log = json.load(f)
|
| 115 |
-
for entry in reversed(activity_log[-5:]):
|
| 116 |
-
st.sidebar.text(f"{entry['timestamp']} - {entry['event']}")
|
| 117 |
-
else:
|
| 118 |
-
st.sidebar.info("No recent logs found.")
|
| 119 |
-
|
| 120 |
-
# ---- Drift Chart ----
|
| 121 |
-
st.sidebar.header("π Drift Monitoring")
|
| 122 |
-
if DRIFT_LOG_PATH.exists():
|
| 123 |
-
drift_df = pd.read_json(DRIFT_LOG_PATH)
|
| 124 |
-
drift_df["timestamp"] = pd.to_datetime(drift_df["timestamp"])
|
| 125 |
-
drift_df["status"] = drift_df["drift_detected"].map({True: "Drift", False: "Stable"})
|
| 126 |
-
|
| 127 |
-
chart = alt.Chart(drift_df).mark_line(point=True).encode(
|
| 128 |
-
x="timestamp:T",
|
| 129 |
-
y=alt.Y("test_accuracy:Q", title="Test Accuracy"),
|
| 130 |
-
color="status:N",
|
| 131 |
-
tooltip=["timestamp", "test_accuracy", "status"]
|
| 132 |
-
).properties(title="Model Performance & Drift", height=250)
|
| 133 |
-
|
| 134 |
-
st.sidebar.altair_chart(chart, use_container_width=True)
|
| 135 |
-
else:
|
| 136 |
-
st.sidebar.info("No drift data available.")
|
|
|
|
| 1 |
+
# app/streamlit_app.py
|
| 2 |
+
|
| 3 |
+
import streamlit as st
|
| 4 |
+
import requests
|
| 5 |
+
import json
|
| 6 |
+
import pandas as pd
|
| 7 |
+
import altair as alt
|
| 8 |
+
import time
|
| 9 |
+
import subprocess
|
| 10 |
+
import sys
|
| 11 |
+
from pathlib import Path
|
| 12 |
+
|
| 13 |
+
# Add root to sys.path for imports if needed
|
| 14 |
+
sys.path.append(str(Path(__file__).resolve().parent.parent))
|
| 15 |
+
|
| 16 |
+
# ---- Constants ----
|
| 17 |
+
# API_URL = "http://127.0.0.1:8000/predict"
|
| 18 |
+
API_URL = "http://localhost:8000/predict"
|
| 19 |
+
CUSTOM_DATA_PATH = Path(__file__).parent.parent / "data" / "custom_upload.csv"
|
| 20 |
+
METADATA_PATH = Path(__file__).parent.parent / "model" / "metadata.json"
|
| 21 |
+
ACTIVITY_LOG_PATH = Path(__file__).parent.parent / "logs" / "activity_log.json"
|
| 22 |
+
DRIFT_LOG_PATH = Path(__file__).parent.parent / "logs" / "monitoring_log.json"
|
| 23 |
+
|
| 24 |
+
# ---- Streamlit UI ----
|
| 25 |
+
st.set_page_config(page_title="Fake News Detector", layout="centered")
|
| 26 |
+
st.title("π° Fake News Detector")
|
| 27 |
+
st.markdown("Enter a news article's headline or content to predict if it's **Fake** or **Real**.")
|
| 28 |
+
|
| 29 |
+
# ---- Prediction Form ----
|
| 30 |
+
with st.form(key="predict_form"):
|
| 31 |
+
user_input = st.text_area("News Text", height=150)
|
| 32 |
+
submit = st.form_submit_button("π§ Predict")
|
| 33 |
+
|
| 34 |
+
if submit:
|
| 35 |
+
if not user_input.strip():
|
| 36 |
+
st.warning("Please enter some text.")
|
| 37 |
+
else:
|
| 38 |
+
try:
|
| 39 |
+
response = requests.post(API_URL, json={"text": user_input})
|
| 40 |
+
if response.status_code == 200:
|
| 41 |
+
result = response.json()
|
| 42 |
+
pred = result["prediction"]
|
| 43 |
+
prob = result["confidence"]
|
| 44 |
+
st.success(f"π§Ύ Prediction: **{pred}**")
|
| 45 |
+
st.info(f"π Confidence: {prob * 100:.2f}%")
|
| 46 |
+
else:
|
| 47 |
+
st.error(f"API Error: {response.status_code}")
|
| 48 |
+
except Exception as e:
|
| 49 |
+
st.error(f"β Failed to connect to FastAPI: {e}")
|
| 50 |
+
|
| 51 |
+
# ---- Upload + Train ----
|
| 52 |
+
st.header("π€ Train with Your Own CSV")
|
| 53 |
+
|
| 54 |
+
with st.expander("Upload CSV to Retrain Model (columns: `text`, `label`)"):
|
| 55 |
+
uploaded_file = st.file_uploader("Choose a CSV file", type=["csv"])
|
| 56 |
+
if uploaded_file:
|
| 57 |
+
try:
|
| 58 |
+
df_custom = pd.read_csv(uploaded_file)
|
| 59 |
+
if "text" not in df_custom.columns or "label" not in df_custom.columns:
|
| 60 |
+
st.error("CSV must contain 'text' and 'label' columns.")
|
| 61 |
+
else:
|
| 62 |
+
st.success("β
File looks good. Starting training...")
|
| 63 |
+
|
| 64 |
+
# Save CSV
|
| 65 |
+
df_custom.to_csv(CUSTOM_DATA_PATH, index=False)
|
| 66 |
+
|
| 67 |
+
# Progress bar animation
|
| 68 |
+
progress_bar = st.progress(0)
|
| 69 |
+
status_text = st.empty()
|
| 70 |
+
for percent in range(0, 101, 10):
|
| 71 |
+
progress_bar.progress(percent)
|
| 72 |
+
status_text.text(f"Training Progress: {percent}%")
|
| 73 |
+
time.sleep(0.2)
|
| 74 |
+
|
| 75 |
+
# Trigger training subprocess
|
| 76 |
+
result = subprocess.run(
|
| 77 |
+
[sys.executable, "model/train.py", "--data_path", str(CUSTOM_DATA_PATH), "--output_path", "model/custom_model.pt"],
|
| 78 |
+
capture_output=True, text=True
|
| 79 |
+
)
|
| 80 |
+
|
| 81 |
+
if result.returncode == 0:
|
| 82 |
+
acc = float(result.stdout.strip())
|
| 83 |
+
new_version = "custom_" + time.strftime("%H%M%S")
|
| 84 |
+
metadata = {
|
| 85 |
+
"model_version": new_version,
|
| 86 |
+
"test_accuracy": round(acc, 4),
|
| 87 |
+
"timestamp": time.strftime("%Y-%m-%dT%H:%M:%S")
|
| 88 |
+
}
|
| 89 |
+
with open(METADATA_PATH, "w") as f:
|
| 90 |
+
json.dump(metadata, f, indent=2)
|
| 91 |
+
status_text.text("π Training complete!")
|
| 92 |
+
st.success(f"New model trained with accuracy: {acc:.4f}")
|
| 93 |
+
else:
|
| 94 |
+
st.error("Training failed.")
|
| 95 |
+
st.text(result.stderr)
|
| 96 |
+
except Exception as e:
|
| 97 |
+
st.error(f"Error reading file: {e}")
|
| 98 |
+
|
| 99 |
+
# ---- Sidebar Info ----
|
| 100 |
+
st.sidebar.header("π Model Info")
|
| 101 |
+
if METADATA_PATH.exists():
|
| 102 |
+
with open(METADATA_PATH) as f:
|
| 103 |
+
meta = json.load(f)
|
| 104 |
+
st.sidebar.markdown(f"**Version**: `{meta['model_version']}`")
|
| 105 |
+
st.sidebar.markdown(f"**Accuracy**: `{meta['test_accuracy']}`")
|
| 106 |
+
st.sidebar.markdown(f"**Updated**: `{meta['timestamp'].split('T')[0]}`")
|
| 107 |
+
else:
|
| 108 |
+
st.sidebar.warning("No metadata found.")
|
| 109 |
+
|
| 110 |
+
# ---- Activity Log ----
|
| 111 |
+
st.sidebar.header("π Activity Log")
|
| 112 |
+
if ACTIVITY_LOG_PATH.exists():
|
| 113 |
+
with open(ACTIVITY_LOG_PATH) as f:
|
| 114 |
+
activity_log = json.load(f)
|
| 115 |
+
for entry in reversed(activity_log[-5:]):
|
| 116 |
+
st.sidebar.text(f"{entry['timestamp']} - {entry['event']}")
|
| 117 |
+
else:
|
| 118 |
+
st.sidebar.info("No recent logs found.")
|
| 119 |
+
|
| 120 |
+
# ---- Drift Chart ----
|
| 121 |
+
st.sidebar.header("π Drift Monitoring")
|
| 122 |
+
if DRIFT_LOG_PATH.exists():
|
| 123 |
+
drift_df = pd.read_json(DRIFT_LOG_PATH)
|
| 124 |
+
drift_df["timestamp"] = pd.to_datetime(drift_df["timestamp"])
|
| 125 |
+
drift_df["status"] = drift_df["drift_detected"].map({True: "Drift", False: "Stable"})
|
| 126 |
+
|
| 127 |
+
chart = alt.Chart(drift_df).mark_line(point=True).encode(
|
| 128 |
+
x="timestamp:T",
|
| 129 |
+
y=alt.Y("test_accuracy:Q", title="Test Accuracy"),
|
| 130 |
+
color="status:N",
|
| 131 |
+
tooltip=["timestamp", "test_accuracy", "status"]
|
| 132 |
+
).properties(title="Model Performance & Drift", height=250)
|
| 133 |
+
|
| 134 |
+
st.sidebar.altair_chart(chart, use_container_width=True)
|
| 135 |
+
else:
|
| 136 |
+
st.sidebar.info("No drift data available.")
|