Commit
·
8cf2942
1
Parent(s):
9d6a9cd
Update app/streamlit_app.py
Browse filesCross Validation Implementation
- app/streamlit_app.py +574 -25
app/streamlit_app.py
CHANGED
|
@@ -117,6 +117,48 @@ class StreamlitAppManager:
|
|
| 117 |
if 'auto_refresh' not in st.session_state:
|
| 118 |
st.session_state.auto_refresh = False
|
| 119 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 120 |
|
| 121 |
# Initialize app manager
|
| 122 |
app_manager = StreamlitAppManager()
|
|
@@ -244,7 +286,372 @@ def show_logs_section():
|
|
| 244 |
else:
|
| 245 |
st.warning(f"Log file not found: {log_path}")
|
| 246 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 247 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 248 |
def save_prediction_to_history(text: str, prediction: str, confidence: float):
|
| 249 |
"""Save prediction to session history"""
|
| 250 |
prediction_entry = {
|
|
@@ -357,6 +764,81 @@ def create_prediction_history_chart():
|
|
| 357 |
fig.update_layout(height=400)
|
| 358 |
return fig
|
| 359 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 360 |
|
| 361 |
def render_environment_info():
|
| 362 |
"""Render environment information"""
|
|
@@ -628,62 +1110,129 @@ def main():
|
|
| 628 |
# Tab 3: Analytics
|
| 629 |
with tab3:
|
| 630 |
st.header("System Analytics")
|
| 631 |
-
|
| 632 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 633 |
if st.session_state.prediction_history:
|
| 634 |
st.subheader("Recent Predictions")
|
| 635 |
-
|
| 636 |
# History chart
|
| 637 |
fig_history = create_prediction_history_chart()
|
| 638 |
if fig_history:
|
| 639 |
st.plotly_chart(fig_history, use_container_width=True)
|
| 640 |
-
|
| 641 |
# History table
|
| 642 |
history_df = pd.DataFrame(st.session_state.prediction_history)
|
| 643 |
st.dataframe(history_df.tail(20), use_container_width=True)
|
| 644 |
-
|
| 645 |
else:
|
| 646 |
st.info(
|
| 647 |
"No prediction history available. Make some predictions to see analytics.")
|
| 648 |
-
|
| 649 |
-
# System metrics
|
| 650 |
st.subheader("System Metrics")
|
| 651 |
-
|
| 652 |
# Load various log files for analytics
|
| 653 |
try:
|
| 654 |
-
# API health check
|
| 655 |
if app_manager.api_available:
|
| 656 |
response = app_manager.session.get(
|
| 657 |
f"{app_manager.config['api_url']}/metrics")
|
| 658 |
if response.status_code == 200:
|
| 659 |
metrics = response.json()
|
| 660 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 661 |
col1, col2, col3, col4 = st.columns(4)
|
| 662 |
-
|
| 663 |
with col1:
|
| 664 |
st.metric("Total API Requests",
|
| 665 |
-
|
| 666 |
-
|
| 667 |
with col2:
|
| 668 |
-
st.metric("Unique Clients",
|
| 669 |
-
|
| 670 |
-
|
| 671 |
with col3:
|
| 672 |
-
st.metric("Model Version",
|
| 673 |
-
|
| 674 |
-
|
| 675 |
with col4:
|
| 676 |
-
status =
|
| 677 |
st.metric("Model Status", status)
|
| 678 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 679 |
# Environment details
|
| 680 |
st.subheader("Environment Details")
|
| 681 |
-
|
|
|
|
| 682 |
st.info(f"Running in: {env_data}")
|
| 683 |
|
| 684 |
# Available files
|
| 685 |
-
datasets =
|
| 686 |
-
models =
|
| 687 |
|
| 688 |
col1, col2 = st.columns(2)
|
| 689 |
with col1:
|
|
@@ -697,7 +1246,7 @@ def main():
|
|
| 697 |
for name, exists in models.items():
|
| 698 |
status = "✅" if exists else "❌"
|
| 699 |
st.write(f"{status} {name}")
|
| 700 |
-
|
| 701 |
except Exception as e:
|
| 702 |
st.warning(f"Could not load API metrics: {e}")
|
| 703 |
|
|
|
|
| 117 |
if 'auto_refresh' not in st.session_state:
|
| 118 |
st.session_state.auto_refresh = False
|
| 119 |
|
| 120 |
+
def get_cv_results_from_api(self):
|
| 121 |
+
"""Get cross-validation results from API"""
|
| 122 |
+
try:
|
| 123 |
+
if not self.api_available:
|
| 124 |
+
return None
|
| 125 |
+
|
| 126 |
+
response = self.session.get(
|
| 127 |
+
f"{self.config['api_url']}/cv/results",
|
| 128 |
+
timeout=10
|
| 129 |
+
)
|
| 130 |
+
|
| 131 |
+
if response.status_code == 200:
|
| 132 |
+
return response.json()
|
| 133 |
+
elif response.status_code == 404:
|
| 134 |
+
return {'error': 'No CV results available'}
|
| 135 |
+
else:
|
| 136 |
+
return None
|
| 137 |
+
except Exception as e:
|
| 138 |
+
logger.warning(f"Could not fetch CV results: {e}")
|
| 139 |
+
return None
|
| 140 |
+
|
| 141 |
+
def get_model_comparison_from_api(self):
|
| 142 |
+
"""Get model comparison results from API"""
|
| 143 |
+
try:
|
| 144 |
+
if not self.api_available:
|
| 145 |
+
return None
|
| 146 |
+
|
| 147 |
+
response = self.session.get(
|
| 148 |
+
f"{self.config['api_url']}/cv/comparison",
|
| 149 |
+
timeout=10
|
| 150 |
+
)
|
| 151 |
+
|
| 152 |
+
if response.status_code == 200:
|
| 153 |
+
return response.json()
|
| 154 |
+
elif response.status_code == 404:
|
| 155 |
+
return {'error': 'No comparison results available'}
|
| 156 |
+
else:
|
| 157 |
+
return None
|
| 158 |
+
except Exception as e:
|
| 159 |
+
logger.warning(f"Could not fetch model comparison: {e}")
|
| 160 |
+
return None
|
| 161 |
+
|
| 162 |
|
| 163 |
# Initialize app manager
|
| 164 |
app_manager = StreamlitAppManager()
|
|
|
|
| 286 |
else:
|
| 287 |
st.warning(f"Log file not found: {log_path}")
|
| 288 |
|
| 289 |
+
# ADD STANDALONE FS HERE
|
| 290 |
+
def render_cv_results_section(self):
|
| 291 |
+
"""Render cross-validation results section"""
|
| 292 |
+
st.subheader("🎯 Cross-Validation Results")
|
| 293 |
+
|
| 294 |
+
cv_results = self.get_cv_results_from_api()
|
| 295 |
+
|
| 296 |
+
if cv_results is None:
|
| 297 |
+
st.warning("API not available - showing local CV results if available")
|
| 298 |
+
|
| 299 |
+
# Try to load local metadata
|
| 300 |
+
try:
|
| 301 |
+
from path_config import path_manager
|
| 302 |
+
metadata_path = path_manager.get_metadata_path()
|
| 303 |
+
|
| 304 |
+
if metadata_path.exists():
|
| 305 |
+
with open(metadata_path, 'r') as f:
|
| 306 |
+
metadata = json.load(f)
|
| 307 |
+
cv_results = {'cross_validation': metadata.get('cross_validation', {})}
|
| 308 |
+
else:
|
| 309 |
+
st.info("No local CV results found")
|
| 310 |
+
return
|
| 311 |
+
except Exception as e:
|
| 312 |
+
st.error(f"Could not load local CV results: {e}")
|
| 313 |
+
return
|
| 314 |
+
|
| 315 |
+
if cv_results and 'error' not in cv_results:
|
| 316 |
+
# Display model information
|
| 317 |
+
if 'model_version' in cv_results:
|
| 318 |
+
st.info(f"**Model Version:** {cv_results.get('model_version', 'Unknown')} | "
|
| 319 |
+
f"**Type:** {cv_results.get('model_type', 'Unknown')} | "
|
| 320 |
+
f"**Trained:** {cv_results.get('training_timestamp', 'Unknown')}")
|
| 321 |
+
|
| 322 |
+
cv_data = cv_results.get('cross_validation', {})
|
| 323 |
+
|
| 324 |
+
if cv_data:
|
| 325 |
+
# CV Methodology
|
| 326 |
+
methodology = cv_data.get('methodology', {})
|
| 327 |
+
col1, col2, col3 = st.columns(3)
|
| 328 |
+
|
| 329 |
+
with col1:
|
| 330 |
+
st.metric("CV Folds", methodology.get('n_splits', 'Unknown'))
|
| 331 |
+
with col2:
|
| 332 |
+
st.metric("CV Type", methodology.get('cv_type', 'StratifiedKFold'))
|
| 333 |
+
with col3:
|
| 334 |
+
st.metric("Random State", methodology.get('random_state', 42))
|
| 335 |
+
|
| 336 |
+
# Performance Metrics Summary
|
| 337 |
+
st.subheader("📊 Performance Summary")
|
| 338 |
+
|
| 339 |
+
test_scores = cv_data.get('test_scores', {})
|
| 340 |
+
if test_scores:
|
| 341 |
+
|
| 342 |
+
metrics_cols = st.columns(len(test_scores))
|
| 343 |
+
for idx, (metric, scores) in enumerate(test_scores.items()):
|
| 344 |
+
with metrics_cols[idx]:
|
| 345 |
+
if isinstance(scores, dict):
|
| 346 |
+
mean_val = scores.get('mean', 0)
|
| 347 |
+
std_val = scores.get('std', 0)
|
| 348 |
+
st.metric(
|
| 349 |
+
f"{metric.upper()}",
|
| 350 |
+
f"{mean_val:.4f}",
|
| 351 |
+
delta=f"±{std_val:.4f}"
|
| 352 |
+
)
|
| 353 |
+
|
| 354 |
+
# Detailed CV Scores Visualization
|
| 355 |
+
st.subheader("📈 Cross-Validation Scores by Metric")
|
| 356 |
+
|
| 357 |
+
# Create a comprehensive chart
|
| 358 |
+
chart_data = []
|
| 359 |
+
fold_results = cv_data.get('individual_fold_results', [])
|
| 360 |
+
|
| 361 |
+
if fold_results:
|
| 362 |
+
for fold_result in fold_results:
|
| 363 |
+
fold_num = fold_result.get('fold', 0)
|
| 364 |
+
test_scores_fold = fold_result.get('test_scores', {})
|
| 365 |
+
|
| 366 |
+
for metric, score in test_scores_fold.items():
|
| 367 |
+
chart_data.append({
|
| 368 |
+
'Fold': f"Fold {fold_num}",
|
| 369 |
+
'Metric': metric.upper(),
|
| 370 |
+
'Score': score,
|
| 371 |
+
'Type': 'Test'
|
| 372 |
+
})
|
| 373 |
+
|
| 374 |
+
# Add train scores if available
|
| 375 |
+
train_scores_fold = fold_result.get('train_scores', {})
|
| 376 |
+
for metric, score in train_scores_fold.items():
|
| 377 |
+
chart_data.append({
|
| 378 |
+
'Fold': f"Fold {fold_num}",
|
| 379 |
+
'Metric': metric.upper(),
|
| 380 |
+
'Score': score,
|
| 381 |
+
'Type': 'Train'
|
| 382 |
+
})
|
| 383 |
+
|
| 384 |
+
if chart_data:
|
| 385 |
+
df_cv = pd.DataFrame(chart_data)
|
| 386 |
+
|
| 387 |
+
# Create separate charts for each metric
|
| 388 |
+
for metric in df_cv['Metric'].unique():
|
| 389 |
+
metric_data = df_cv[df_cv['Metric'] == metric]
|
| 390 |
+
|
| 391 |
+
fig = px.bar(
|
| 392 |
+
metric_data,
|
| 393 |
+
x='Fold',
|
| 394 |
+
y='Score',
|
| 395 |
+
color='Type',
|
| 396 |
+
title=f'{metric} Scores Across CV Folds',
|
| 397 |
+
barmode='group'
|
| 398 |
+
)
|
| 399 |
+
|
| 400 |
+
fig.update_layout(height=400)
|
| 401 |
+
st.plotly_chart(fig, use_container_width=True)
|
| 402 |
+
|
| 403 |
+
# Performance Indicators
|
| 404 |
+
st.subheader("🔍 Model Quality Indicators")
|
| 405 |
+
|
| 406 |
+
performance_indicators = cv_data.get('performance_indicators', {})
|
| 407 |
+
col1, col2 = st.columns(2)
|
| 408 |
+
|
| 409 |
+
with col1:
|
| 410 |
+
overfitting_score = performance_indicators.get('overfitting_score', 'Unknown')
|
| 411 |
+
if isinstance(overfitting_score, (int, float)):
|
| 412 |
+
if overfitting_score < 0.05:
|
| 413 |
+
st.success(f"**Overfitting Score:** {overfitting_score:.4f} (Low)")
|
| 414 |
+
elif overfitting_score < 0.15:
|
| 415 |
+
st.warning(f"**Overfitting Score:** {overfitting_score:.4f} (Moderate)")
|
| 416 |
+
else:
|
| 417 |
+
st.error(f"**Overfitting Score:** {overfitting_score:.4f} (High)")
|
| 418 |
+
else:
|
| 419 |
+
st.info(f"**Overfitting Score:** {overfitting_score}")
|
| 420 |
+
|
| 421 |
+
with col2:
|
| 422 |
+
stability_score = performance_indicators.get('stability_score', 'Unknown')
|
| 423 |
+
if isinstance(stability_score, (int, float)):
|
| 424 |
+
if stability_score > 0.9:
|
| 425 |
+
st.success(f"**Stability Score:** {stability_score:.4f} (High)")
|
| 426 |
+
elif stability_score > 0.7:
|
| 427 |
+
st.warning(f"**Stability Score:** {stability_score:.4f} (Moderate)")
|
| 428 |
+
else:
|
| 429 |
+
st.error(f"**Stability Score:** {stability_score:.4f} (Low)")
|
| 430 |
+
else:
|
| 431 |
+
st.info(f"**Stability Score:** {stability_score}")
|
| 432 |
+
|
| 433 |
+
# Statistical Validation Results
|
| 434 |
+
if 'statistical_validation' in cv_results:
|
| 435 |
+
st.subheader("📈 Statistical Validation")
|
| 436 |
+
|
| 437 |
+
stat_validation = cv_results['statistical_validation']
|
| 438 |
+
|
| 439 |
+
for metric, validation_data in stat_validation.items():
|
| 440 |
+
if isinstance(validation_data, dict):
|
| 441 |
+
with st.expander(f"Statistical Tests - {metric.upper()}"):
|
| 442 |
+
|
| 443 |
+
col1, col2 = st.columns(2)
|
| 444 |
+
|
| 445 |
+
with col1:
|
| 446 |
+
st.write(f"**Improvement:** {validation_data.get('improvement', 0):.4f}")
|
| 447 |
+
st.write(f"**Effect Size:** {validation_data.get('effect_size', 0):.4f}")
|
| 448 |
+
|
| 449 |
+
with col2:
|
| 450 |
+
sig_improvement = validation_data.get('significant_improvement', False)
|
| 451 |
+
if sig_improvement:
|
| 452 |
+
st.success("**Significant Improvement:** Yes")
|
| 453 |
+
else:
|
| 454 |
+
st.info("**Significant Improvement:** No")
|
| 455 |
+
|
| 456 |
+
# Display test results
|
| 457 |
+
tests = validation_data.get('tests', {})
|
| 458 |
+
if tests:
|
| 459 |
+
st.write("**Statistical Test Results:**")
|
| 460 |
+
for test_name, test_result in tests.items():
|
| 461 |
+
if isinstance(test_result, dict):
|
| 462 |
+
p_value = test_result.get('p_value', 1.0)
|
| 463 |
+
significant = test_result.get('significant', False)
|
| 464 |
+
|
| 465 |
+
status = "✅ Significant" if significant else "❌ Not Significant"
|
| 466 |
+
st.write(f"- {test_name}: p-value = {p_value:.4f} ({status})")
|
| 467 |
+
|
| 468 |
+
# Promotion Validation
|
| 469 |
+
if 'promotion_validation' in cv_results:
|
| 470 |
+
st.subheader("🚀 Model Promotion Validation")
|
| 471 |
+
|
| 472 |
+
promotion_val = cv_results['promotion_validation']
|
| 473 |
+
|
| 474 |
+
col1, col2, col3 = st.columns(3)
|
| 475 |
+
|
| 476 |
+
with col1:
|
| 477 |
+
confidence = promotion_val.get('decision_confidence', 'Unknown')
|
| 478 |
+
if isinstance(confidence, (int, float)):
|
| 479 |
+
st.metric("Decision Confidence", f"{confidence:.2%}")
|
| 480 |
+
else:
|
| 481 |
+
st.metric("Decision Confidence", str(confidence))
|
| 482 |
+
|
| 483 |
+
with col2:
|
| 484 |
+
st.write(f"**Promotion Reason:**")
|
| 485 |
+
st.write(promotion_val.get('promotion_reason', 'Unknown'))
|
| 486 |
+
|
| 487 |
+
with col3:
|
| 488 |
+
st.write(f"**Comparison Method:**")
|
| 489 |
+
st.write(promotion_val.get('comparison_method', 'Unknown'))
|
| 490 |
+
|
| 491 |
+
# Raw CV Data (expandable)
|
| 492 |
+
with st.expander("🔍 Detailed CV Data"):
|
| 493 |
+
st.json(cv_data)
|
| 494 |
+
|
| 495 |
+
else:
|
| 496 |
+
st.info("No detailed CV test scores available")
|
| 497 |
+
else:
|
| 498 |
+
st.info("No cross-validation data available")
|
| 499 |
+
else:
|
| 500 |
+
error_msg = cv_results.get('error', 'Unknown error') if cv_results else 'No CV results available'
|
| 501 |
+
st.warning(f"Cross-validation results not available: {error_msg}")
|
| 502 |
+
|
| 503 |
+
def render_model_comparison_section(self):
|
| 504 |
+
"""Render model comparison results section"""
|
| 505 |
+
st.subheader("⚖️ Model Comparison Results")
|
| 506 |
+
|
| 507 |
+
comparison_results = self.get_model_comparison_from_api()
|
| 508 |
+
|
| 509 |
+
if comparison_results is None:
|
| 510 |
+
st.warning("API not available - comparison results not accessible")
|
| 511 |
+
return
|
| 512 |
+
|
| 513 |
+
if comparison_results and 'error' not in comparison_results:
|
| 514 |
+
|
| 515 |
+
# Comparison Summary
|
| 516 |
+
summary = comparison_results.get('summary', {})
|
| 517 |
+
models_compared = comparison_results.get('models_compared', {})
|
| 518 |
+
|
| 519 |
+
st.info(f"**Comparison:** {models_compared.get('model1_name', 'Model 1')} vs "
|
| 520 |
+
f"{models_compared.get('model2_name', 'Model 2')} | "
|
| 521 |
+
f"**Timestamp:** {comparison_results.get('comparison_timestamp', 'Unknown')}")
|
| 522 |
+
|
| 523 |
+
# Decision Summary
|
| 524 |
+
col1, col2, col3 = st.columns(3)
|
| 525 |
+
|
| 526 |
+
with col1:
|
| 527 |
+
decision = summary.get('decision', False)
|
| 528 |
+
if decision:
|
| 529 |
+
st.success("**Decision:** Promote New Model")
|
| 530 |
+
else:
|
| 531 |
+
st.info("**Decision:** Keep Current Model")
|
| 532 |
+
|
| 533 |
+
with col2:
|
| 534 |
+
confidence = summary.get('confidence', 0)
|
| 535 |
+
st.metric("Decision Confidence", f"{confidence:.2%}")
|
| 536 |
+
|
| 537 |
+
with col3:
|
| 538 |
+
st.write("**Reason:**")
|
| 539 |
+
st.write(summary.get('reason', 'Unknown'))
|
| 540 |
+
|
| 541 |
+
# Performance Comparison
|
| 542 |
+
st.subheader("📊 Performance Comparison")
|
| 543 |
+
|
| 544 |
+
prod_performance = comparison_results.get('model_performance', {}).get('production_model', {})
|
| 545 |
+
cand_performance = comparison_results.get('model_performance', {}).get('candidate_model', {})
|
| 546 |
+
|
| 547 |
+
# Create comparison chart
|
| 548 |
+
if prod_performance.get('test_scores') and cand_performance.get('test_scores'):
|
| 549 |
+
|
| 550 |
+
comparison_data = []
|
| 551 |
+
|
| 552 |
+
prod_scores = prod_performance['test_scores']
|
| 553 |
+
cand_scores = cand_performance['test_scores']
|
| 554 |
+
|
| 555 |
+
for metric in set(prod_scores.keys()) & set(cand_scores.keys()):
|
| 556 |
+
prod_mean = prod_scores[metric].get('mean', 0)
|
| 557 |
+
cand_mean = cand_scores[metric].get('mean', 0)
|
| 558 |
+
|
| 559 |
+
comparison_data.extend([
|
| 560 |
+
{'Model': 'Production', 'Metric': metric.upper(), 'Score': prod_mean},
|
| 561 |
+
{'Model': 'Candidate', 'Metric': metric.upper(), 'Score': cand_mean}
|
| 562 |
+
])
|
| 563 |
|
| 564 |
+
if comparison_data:
|
| 565 |
+
df_comparison = pd.DataFrame(comparison_data)
|
| 566 |
+
|
| 567 |
+
fig = px.bar(
|
| 568 |
+
df_comparison,
|
| 569 |
+
x='Metric',
|
| 570 |
+
y='Score',
|
| 571 |
+
color='Model',
|
| 572 |
+
title='Model Performance Comparison',
|
| 573 |
+
barmode='group'
|
| 574 |
+
)
|
| 575 |
+
|
| 576 |
+
fig.update_layout(height=400)
|
| 577 |
+
st.plotly_chart(fig, use_container_width=True)
|
| 578 |
+
|
| 579 |
+
# Detailed Metric Comparisons
|
| 580 |
+
st.subheader("🔍 Detailed Metric Analysis")
|
| 581 |
+
|
| 582 |
+
metric_comparisons = comparison_results.get('metric_comparisons', {})
|
| 583 |
+
|
| 584 |
+
if metric_comparisons:
|
| 585 |
+
for metric, comparison_data in metric_comparisons.items():
|
| 586 |
+
if isinstance(comparison_data, dict):
|
| 587 |
+
|
| 588 |
+
with st.expander(f"{metric.upper()} Analysis"):
|
| 589 |
+
|
| 590 |
+
col1, col2, col3 = st.columns(3)
|
| 591 |
+
|
| 592 |
+
with col1:
|
| 593 |
+
improvement = comparison_data.get('improvement', 0)
|
| 594 |
+
rel_improvement = comparison_data.get('relative_improvement', 0)
|
| 595 |
+
|
| 596 |
+
if improvement > 0:
|
| 597 |
+
st.success(f"**Improvement:** +{improvement:.4f}")
|
| 598 |
+
st.success(f"**Relative:** +{rel_improvement:.2f}%")
|
| 599 |
+
else:
|
| 600 |
+
st.info(f"**Improvement:** {improvement:.4f}")
|
| 601 |
+
st.info(f"**Relative:** {rel_improvement:.2f}%")
|
| 602 |
+
|
| 603 |
+
with col2:
|
| 604 |
+
effect_size = comparison_data.get('effect_size', 0)
|
| 605 |
+
|
| 606 |
+
if abs(effect_size) > 0.8:
|
| 607 |
+
st.success(f"**Effect Size:** {effect_size:.4f} (Large)")
|
| 608 |
+
elif abs(effect_size) > 0.5:
|
| 609 |
+
st.warning(f"**Effect Size:** {effect_size:.4f} (Medium)")
|
| 610 |
+
else:
|
| 611 |
+
st.info(f"**Effect Size:** {effect_size:.4f} (Small)")
|
| 612 |
+
|
| 613 |
+
with col3:
|
| 614 |
+
sig_improvement = comparison_data.get('significant_improvement', False)
|
| 615 |
+
practical_sig = comparison_data.get('practical_significance', False)
|
| 616 |
+
|
| 617 |
+
if sig_improvement:
|
| 618 |
+
st.success("**Statistical Significance:** Yes")
|
| 619 |
+
else:
|
| 620 |
+
st.info("**Statistical Significance:** No")
|
| 621 |
+
|
| 622 |
+
if practical_sig:
|
| 623 |
+
st.success("**Practical Significance:** Yes")
|
| 624 |
+
else:
|
| 625 |
+
st.info("**Practical Significance:** No")
|
| 626 |
+
|
| 627 |
+
# Statistical test results
|
| 628 |
+
tests = comparison_data.get('tests', {})
|
| 629 |
+
if tests:
|
| 630 |
+
st.write("**Statistical Tests:**")
|
| 631 |
+
for test_name, test_result in tests.items():
|
| 632 |
+
if isinstance(test_result, dict):
|
| 633 |
+
p_value = test_result.get('p_value', 1.0)
|
| 634 |
+
significant = test_result.get('significant', False)
|
| 635 |
+
|
| 636 |
+
status = "✅" if significant else "❌"
|
| 637 |
+
st.write(f"- {test_name}: p = {p_value:.4f} {status}")
|
| 638 |
+
|
| 639 |
+
# CV Methodology
|
| 640 |
+
cv_methodology = comparison_results.get('cv_methodology', {})
|
| 641 |
+
if cv_methodology:
|
| 642 |
+
st.subheader("🎯 Cross-Validation Methodology")
|
| 643 |
+
st.info(f"**CV Folds:** {cv_methodology.get('cv_folds', 'Unknown')} | "
|
| 644 |
+
f"**Session ID:** {comparison_results.get('session_id', 'Unknown')}")
|
| 645 |
+
|
| 646 |
+
# Raw comparison data (expandable)
|
| 647 |
+
with st.expander("🔍 Raw Comparison Data"):
|
| 648 |
+
st.json(comparison_results)
|
| 649 |
+
|
| 650 |
+
else:
|
| 651 |
+
error_msg = comparison_results.get('error', 'Unknown error') if comparison_results else 'No comparison results available'
|
| 652 |
+
st.warning(f"Model comparison results not available: {error_msg}")
|
| 653 |
+
|
| 654 |
+
|
| 655 |
def save_prediction_to_history(text: str, prediction: str, confidence: float):
|
| 656 |
"""Save prediction to session history"""
|
| 657 |
prediction_entry = {
|
|
|
|
| 764 |
fig.update_layout(height=400)
|
| 765 |
return fig
|
| 766 |
|
| 767 |
+
def create_cv_performance_chart(cv_results: dict) -> Optional[Any]:
|
| 768 |
+
"""Create a comprehensive CV performance visualization"""
|
| 769 |
+
try:
|
| 770 |
+
if not cv_results or 'cross_validation' not in cv_results:
|
| 771 |
+
return None
|
| 772 |
+
|
| 773 |
+
cv_data = cv_results['cross_validation']
|
| 774 |
+
fold_results = cv_data.get('individual_fold_results', [])
|
| 775 |
+
|
| 776 |
+
if not fold_results:
|
| 777 |
+
return None
|
| 778 |
+
|
| 779 |
+
# Prepare data for visualization
|
| 780 |
+
chart_data = []
|
| 781 |
+
|
| 782 |
+
for fold_result in fold_results:
|
| 783 |
+
fold_num = fold_result.get('fold', 0)
|
| 784 |
+
test_scores = fold_result.get('test_scores', {})
|
| 785 |
+
train_scores = fold_result.get('train_scores', {})
|
| 786 |
+
|
| 787 |
+
for metric, score in test_scores.items():
|
| 788 |
+
chart_data.append({
|
| 789 |
+
'Fold': fold_num,
|
| 790 |
+
'Metric': metric.upper(),
|
| 791 |
+
'Score': score,
|
| 792 |
+
'Type': 'Test',
|
| 793 |
+
'Fold_Label': f"Fold {fold_num}"
|
| 794 |
+
})
|
| 795 |
+
|
| 796 |
+
for metric, score in train_scores.items():
|
| 797 |
+
chart_data.append({
|
| 798 |
+
'Fold': fold_num,
|
| 799 |
+
'Metric': metric.upper(),
|
| 800 |
+
'Score': score,
|
| 801 |
+
'Type': 'Train',
|
| 802 |
+
'Fold_Label': f"Fold {fold_num}"
|
| 803 |
+
})
|
| 804 |
+
|
| 805 |
+
if not chart_data:
|
| 806 |
+
return None
|
| 807 |
+
|
| 808 |
+
df_cv = pd.DataFrame(chart_data)
|
| 809 |
+
|
| 810 |
+
# Create faceted chart showing all metrics
|
| 811 |
+
fig = px.box(
|
| 812 |
+
df_cv[df_cv['Type'] == 'Test'], # Focus on test scores
|
| 813 |
+
x='Metric',
|
| 814 |
+
y='Score',
|
| 815 |
+
title='Cross-Validation Performance Distribution',
|
| 816 |
+
points='all'
|
| 817 |
+
)
|
| 818 |
+
|
| 819 |
+
# Add mean lines
|
| 820 |
+
for metric in df_cv['Metric'].unique():
|
| 821 |
+
metric_data = df_cv[(df_cv['Metric'] == metric) & (df_cv['Type'] == 'Test')]
|
| 822 |
+
mean_score = metric_data['Score'].mean()
|
| 823 |
+
|
| 824 |
+
fig.add_hline(
|
| 825 |
+
y=mean_score,
|
| 826 |
+
line_dash="dash",
|
| 827 |
+
line_color="red",
|
| 828 |
+
annotation_text=f"Mean: {mean_score:.3f}"
|
| 829 |
+
)
|
| 830 |
+
|
| 831 |
+
fig.update_layout(
|
| 832 |
+
height=500,
|
| 833 |
+
showlegend=True
|
| 834 |
+
)
|
| 835 |
+
|
| 836 |
+
return fig
|
| 837 |
+
|
| 838 |
+
except Exception as e:
|
| 839 |
+
logger.error(f"Failed to create CV chart: {e}")
|
| 840 |
+
return None
|
| 841 |
+
|
| 842 |
|
| 843 |
def render_environment_info():
|
| 844 |
"""Render environment information"""
|
|
|
|
| 1110 |
# Tab 3: Analytics
|
| 1111 |
with tab3:
|
| 1112 |
st.header("System Analytics")
|
| 1113 |
+
|
| 1114 |
+
# Add CV and Model Comparison sections
|
| 1115 |
+
col1, col2 = st.columns([1, 1])
|
| 1116 |
+
|
| 1117 |
+
with col1:
|
| 1118 |
+
if st.button("🔄 Refresh CV Results", use_container_width=True):
|
| 1119 |
+
st.rerun()
|
| 1120 |
+
|
| 1121 |
+
with col2:
|
| 1122 |
+
show_detailed_cv = st.checkbox("Show Detailed CV Analysis", value=True)
|
| 1123 |
+
|
| 1124 |
+
if show_detailed_cv:
|
| 1125 |
+
# Render cross-validation results
|
| 1126 |
+
app_manager.render_cv_results_section()
|
| 1127 |
+
|
| 1128 |
+
# Add separator
|
| 1129 |
+
st.divider()
|
| 1130 |
+
|
| 1131 |
+
# Render model comparison results
|
| 1132 |
+
app_manager.render_model_comparison_section()
|
| 1133 |
+
|
| 1134 |
+
# Add separator
|
| 1135 |
+
st.divider()
|
| 1136 |
+
|
| 1137 |
+
# Prediction history (existing content)
|
| 1138 |
if st.session_state.prediction_history:
|
| 1139 |
st.subheader("Recent Predictions")
|
| 1140 |
+
|
| 1141 |
# History chart
|
| 1142 |
fig_history = create_prediction_history_chart()
|
| 1143 |
if fig_history:
|
| 1144 |
st.plotly_chart(fig_history, use_container_width=True)
|
| 1145 |
+
|
| 1146 |
# History table
|
| 1147 |
history_df = pd.DataFrame(st.session_state.prediction_history)
|
| 1148 |
st.dataframe(history_df.tail(20), use_container_width=True)
|
| 1149 |
+
|
| 1150 |
else:
|
| 1151 |
st.info(
|
| 1152 |
"No prediction history available. Make some predictions to see analytics.")
|
| 1153 |
+
|
| 1154 |
+
# System metrics (existing content with CV enhancement)
|
| 1155 |
st.subheader("System Metrics")
|
| 1156 |
+
|
| 1157 |
# Load various log files for analytics
|
| 1158 |
try:
|
| 1159 |
+
# API health check with CV information
|
| 1160 |
if app_manager.api_available:
|
| 1161 |
response = app_manager.session.get(
|
| 1162 |
f"{app_manager.config['api_url']}/metrics")
|
| 1163 |
if response.status_code == 200:
|
| 1164 |
metrics = response.json()
|
| 1165 |
+
|
| 1166 |
+
# Basic metrics
|
| 1167 |
+
api_metrics = metrics.get('api_metrics', {})
|
| 1168 |
+
model_info = metrics.get('model_info', {})
|
| 1169 |
+
cv_summary = metrics.get('cross_validation_summary', {})
|
| 1170 |
+
|
| 1171 |
col1, col2, col3, col4 = st.columns(4)
|
| 1172 |
+
|
| 1173 |
with col1:
|
| 1174 |
st.metric("Total API Requests",
|
| 1175 |
+
api_metrics.get('total_requests', 0))
|
| 1176 |
+
|
| 1177 |
with col2:
|
| 1178 |
+
st.metric("Unique Clients",
|
| 1179 |
+
api_metrics.get('unique_clients', 0))
|
| 1180 |
+
|
| 1181 |
with col3:
|
| 1182 |
+
st.metric("Model Version",
|
| 1183 |
+
model_info.get('model_version', 'Unknown'))
|
| 1184 |
+
|
| 1185 |
with col4:
|
| 1186 |
+
status = model_info.get('model_health', 'unknown')
|
| 1187 |
st.metric("Model Status", status)
|
| 1188 |
+
|
| 1189 |
+
# Cross-validation summary metrics
|
| 1190 |
+
if cv_summary.get('cv_available', False):
|
| 1191 |
+
st.subheader("Cross-Validation Summary")
|
| 1192 |
+
|
| 1193 |
+
cv_col1, cv_col2, cv_col3, cv_col4 = st.columns(4)
|
| 1194 |
+
|
| 1195 |
+
with cv_col1:
|
| 1196 |
+
cv_folds = cv_summary.get('cv_folds', 'Unknown')
|
| 1197 |
+
st.metric("CV Folds", cv_folds)
|
| 1198 |
+
|
| 1199 |
+
with cv_col2:
|
| 1200 |
+
cv_f1 = cv_summary.get('cv_f1_mean')
|
| 1201 |
+
cv_f1_std = cv_summary.get('cv_f1_std')
|
| 1202 |
+
if cv_f1 is not None and cv_f1_std is not None:
|
| 1203 |
+
st.metric("CV F1 Score", f"{cv_f1:.4f}", f"±{cv_f1_std:.4f}")
|
| 1204 |
+
else:
|
| 1205 |
+
st.metric("CV F1 Score", "N/A")
|
| 1206 |
+
|
| 1207 |
+
with cv_col3:
|
| 1208 |
+
cv_acc = cv_summary.get('cv_accuracy_mean')
|
| 1209 |
+
cv_acc_std = cv_summary.get('cv_accuracy_std')
|
| 1210 |
+
if cv_acc is not None and cv_acc_std is not None:
|
| 1211 |
+
st.metric("CV Accuracy", f"{cv_acc:.4f}", f"±{cv_acc_std:.4f}")
|
| 1212 |
+
else:
|
| 1213 |
+
st.metric("CV Accuracy", "N/A")
|
| 1214 |
+
|
| 1215 |
+
with cv_col4:
|
| 1216 |
+
overfitting = cv_summary.get('overfitting_score')
|
| 1217 |
+
if overfitting is not None:
|
| 1218 |
+
if overfitting < 0.05:
|
| 1219 |
+
st.metric("Overfitting", f"{overfitting:.4f}", "Low", delta_color="normal")
|
| 1220 |
+
elif overfitting < 0.15:
|
| 1221 |
+
st.metric("Overfitting", f"{overfitting:.4f}", "Moderate", delta_color="off")
|
| 1222 |
+
else:
|
| 1223 |
+
st.metric("Overfitting", f"{overfitting:.4f}", "High", delta_color="inverse")
|
| 1224 |
+
else:
|
| 1225 |
+
st.metric("Overfitting", "N/A")
|
| 1226 |
+
|
| 1227 |
# Environment details
|
| 1228 |
st.subheader("Environment Details")
|
| 1229 |
+
env_info = metrics.get('environment_info', {})
|
| 1230 |
+
env_data = env_info.get('environment', 'Unknown')
|
| 1231 |
st.info(f"Running in: {env_data}")
|
| 1232 |
|
| 1233 |
# Available files
|
| 1234 |
+
datasets = env_info.get('available_datasets', {})
|
| 1235 |
+
models = env_info.get('available_models', {})
|
| 1236 |
|
| 1237 |
col1, col2 = st.columns(2)
|
| 1238 |
with col1:
|
|
|
|
| 1246 |
for name, exists in models.items():
|
| 1247 |
status = "✅" if exists else "❌"
|
| 1248 |
st.write(f"{status} {name}")
|
| 1249 |
+
|
| 1250 |
except Exception as e:
|
| 1251 |
st.warning(f"Could not load API metrics: {e}")
|
| 1252 |
|