Spend-Analyzer-MCP / DEPLOYMENT_GUIDE.md
Balamurugan Thayalan
spend-analyzer-mcp-mbt v1.0.0
ed1f7cd

A newer version of the Gradio SDK is available: 5.44.1

Upgrade

Spend Analyzer MCP - Deployment Guide

This guide covers deploying the Spend Analyzer MCP to Modal.com with Claude and SambaNova Cloud API integration.

Prerequisites

  1. Modal Account: Sign up at modal.com
  2. API Keys:
    • Anthropic API key for Claude
    • SambaNova Cloud API key
  3. Email Credentials: App-specific passwords for email access

Setup Instructions

1. Install Modal CLI

pip install modal

2. Authenticate with Modal

modal token new

3. Create Modal Secrets

Create the required secrets in your Modal dashboard or via CLI:

Anthropic API Key

modal secret create anthropic-api-key ANTHROPIC_API_KEY=your_claude_api_key_here

SambaNova API Key

modal secret create sambanova-api-key SAMBANOVA_API_KEY=your_sambanova_api_key_here

Email Credentials

modal secret create email-credentials \
  [email protected] \
  EMAIL_PASS=your_app_password \
  IMAP_SERVER=imap.gmail.com

4. Deploy to Modal

# Deploy the application
modal deploy modal_deployment.py

# Or run locally for testing
modal run modal_deployment.py

API Providers

Claude (Anthropic)

  • Model: claude-3-sonnet-20240229
  • Features: Advanced reasoning, financial analysis
  • Setup: Get API key from console.anthropic.com

SambaNova Cloud

  • Model: Meta-Llama-3.1-8B-Instruct
  • Features: Fast inference, cost-effective
  • Setup: Get API key from cloud.sambanova.ai
  • API Format: OpenAI-compatible

Available Modal Functions

1. process_bank_statements

Process bank statements from email attachments.

Parameters:

  • email_config: Email configuration dict
  • days_back: Number of days to look back (default: 30)
  • passwords: Optional PDF passwords dict

Returns:

  • Processed statements list
  • Transaction analysis
  • Error handling for password-protected PDFs

2. analyze_uploaded_statements

Analyze directly uploaded PDF statements.

Parameters:

  • pdf_contents: Dict of filename -> PDF bytes
  • passwords: Optional PDF passwords dict

Returns:

  • Analysis results
  • Transaction categorization
  • Financial insights

3. get_ai_analysis

Get AI-powered financial analysis.

Parameters:

  • analysis_data: Financial data dict
  • user_question: Optional specific question
  • provider: "claude" or "sambanova" (default: "claude")

Returns:

  • AI analysis text
  • Usage statistics
  • Provider information

4. save_user_data / load_user_data

Persistent storage for user analysis data.

Features:

  • User-specific data isolation
  • Timestamp tracking
  • JSON serialization

5. mcp_webhook

MCP protocol endpoint for external integrations.

Features:

  • Tool registration
  • Resource management
  • Error handling

Environment Variables

The following environment variables are automatically available in Modal functions:

ANTHROPIC_API_KEY=your_claude_key
SAMBANOVA_API_KEY=your_sambanova_key
EMAIL_USER=your_email
EMAIL_PASS=your_app_password
IMAP_SERVER=your_imap_server

Usage Examples

Basic Deployment Test

import modal

# Test the deployment
app = modal.App.lookup("spend-analyzer-mcp-bmt")
get_ai_analysis = app["get_ai_analysis"]

# Test with sample data
test_data = {
    "spending_insights": [
        {
            "category": "Food & Dining",
            "total_amount": 500.0,
            "transaction_count": 15
        }
    ],
    "recommendations": ["Consider reducing dining expenses"]
}

result = get_ai_analysis.remote(
    analysis_data=test_data,
    user_question="How can I save money on food?",
    provider="claude"
)

print(result)

Email Processing

email_config = {
    "email": "[email protected]",
    "password": "your_app_password",
    "imap_server": "imap.gmail.com"
}

result = process_bank_statements.remote(
    email_config=email_config,
    days_back=30
)

print(f"Processed {result['total_transactions']} transactions")

PDF Analysis

# Read PDF file
with open("statement.pdf", "rb") as f:
    pdf_content = f.read()

pdf_contents = {"statement.pdf": pdf_content}

result = analyze_uploaded_statements.remote(
    pdf_contents=pdf_contents,
    passwords={"statement.pdf": "optional_password"}
)

print(result['analysis'])

Monitoring and Logs

View Logs

modal logs spend-analyzer-mcp-bmt

Monitor Functions

modal stats spend-analyzer-mcp-bmt

View Volumes

modal volume list

Troubleshooting

Common Issues

  1. Import Errors: Ensure all dependencies are in the Modal image
  2. Secret Access: Verify secrets are created with correct names
  3. PDF Processing: Check file permissions and password requirements
  4. API Limits: Monitor usage for both Claude and SambaNova

Debug Mode

Enable debug logging in Modal functions:

import logging
logging.basicConfig(level=logging.DEBUG)

Local Testing

Test functions locally before deployment:

modal run modal_deployment.py::main

Security Considerations

  1. API Keys: Store in Modal secrets, never in code
  2. Email Passwords: Use app-specific passwords
  3. PDF Data: Processed in memory, not stored permanently
  4. User Data: Isolated by user ID in persistent storage

Cost Optimization

  1. Function Timeouts: Set appropriate timeouts for each function
  2. Memory Allocation: Adjust based on PDF processing needs
  3. API Provider: Choose between Claude (quality) and SambaNova (cost)
  4. Batch Processing: Process multiple PDFs in single function call

Scaling

Modal automatically handles scaling based on demand:

  • Cold Starts: ~2-3 seconds for new containers
  • Warm Containers: Sub-second response times
  • Concurrent Requests: Automatically scaled
  • Resource Limits: Configurable per function

Integration with MCP

The deployment includes a webhook endpoint for MCP integration:

POST https://your-modal-app.modal.run/mcp_webhook

This enables integration with Claude Desktop and other MCP clients.

Support

For deployment issues:

  1. Check Modal logs and documentation
  2. Verify API key permissions
  3. Test with minimal examples
  4. Contact Modal support for platform issues

Next Steps

After successful deployment:

  1. Test all functions with real data
  2. Set up monitoring and alerts
  3. Configure backup strategies
  4. Implement additional security measures
  5. Scale based on usage patterns