File size: 6,620 Bytes
ed1f7cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
# Spend Analyzer MCP - Deployment Guide

This guide covers deploying the Spend Analyzer MCP to Modal.com with Claude and SambaNova Cloud API integration.

## Prerequisites

1. **Modal Account**: Sign up at [modal.com](https://modal.com)
2. **API Keys**: 
   - Anthropic API key for Claude
   - SambaNova Cloud API key
3. **Email Credentials**: App-specific passwords for email access

## Setup Instructions

### 1. Install Modal CLI

```bash
pip install modal
```

### 2. Authenticate with Modal

```bash
modal token new
```

### 3. Create Modal Secrets

Create the required secrets in your Modal dashboard or via CLI:

#### Anthropic API Key
```bash
modal secret create anthropic-api-key ANTHROPIC_API_KEY=your_claude_api_key_here
```

#### SambaNova API Key
```bash
modal secret create sambanova-api-key SAMBANOVA_API_KEY=your_sambanova_api_key_here
```

#### Email Credentials
```bash
modal secret create email-credentials \
  [email protected] \
  EMAIL_PASS=your_app_password \
  IMAP_SERVER=imap.gmail.com
```

### 4. Deploy to Modal

```bash
# Deploy the application
modal deploy modal_deployment.py

# Or run locally for testing
modal run modal_deployment.py
```

## API Providers

### Claude (Anthropic)

- **Model**: claude-3-sonnet-20240229
- **Features**: Advanced reasoning, financial analysis
- **Setup**: Get API key from [console.anthropic.com](https://console.anthropic.com)

### SambaNova Cloud

- **Model**: Meta-Llama-3.1-8B-Instruct
- **Features**: Fast inference, cost-effective
- **Setup**: Get API key from [cloud.sambanova.ai](https://cloud.sambanova.ai)
- **API Format**: OpenAI-compatible

## Available Modal Functions

### 1. `process_bank_statements`
Process bank statements from email attachments.

**Parameters:**
- `email_config`: Email configuration dict
- `days_back`: Number of days to look back (default: 30)
- `passwords`: Optional PDF passwords dict

**Returns:**
- Processed statements list
- Transaction analysis
- Error handling for password-protected PDFs

### 2. `analyze_uploaded_statements`
Analyze directly uploaded PDF statements.

**Parameters:**
- `pdf_contents`: Dict of filename -> PDF bytes
- `passwords`: Optional PDF passwords dict

**Returns:**
- Analysis results
- Transaction categorization
- Financial insights

### 3. `get_ai_analysis`
Get AI-powered financial analysis.

**Parameters:**
- `analysis_data`: Financial data dict
- `user_question`: Optional specific question
- `provider`: "claude" or "sambanova" (default: "claude")

**Returns:**
- AI analysis text
- Usage statistics
- Provider information

### 4. `save_user_data` / `load_user_data`
Persistent storage for user analysis data.

**Features:**
- User-specific data isolation
- Timestamp tracking
- JSON serialization

### 5. `mcp_webhook`
MCP protocol endpoint for external integrations.

**Features:**
- Tool registration
- Resource management
- Error handling

## Environment Variables

The following environment variables are automatically available in Modal functions:

```bash
ANTHROPIC_API_KEY=your_claude_key
SAMBANOVA_API_KEY=your_sambanova_key
EMAIL_USER=your_email
EMAIL_PASS=your_app_password
IMAP_SERVER=your_imap_server
```

## Usage Examples

### Basic Deployment Test

```python
import modal

# Test the deployment
app = modal.App.lookup("spend-analyzer-mcp-bmt")
get_ai_analysis = app["get_ai_analysis"]

# Test with sample data
test_data = {
    "spending_insights": [
        {
            "category": "Food & Dining",
            "total_amount": 500.0,
            "transaction_count": 15
        }
    ],
    "recommendations": ["Consider reducing dining expenses"]
}

result = get_ai_analysis.remote(
    analysis_data=test_data,
    user_question="How can I save money on food?",
    provider="claude"
)

print(result)
```

### Email Processing

```python
email_config = {
    "email": "your_[email protected]",
    "password": "your_app_password",
    "imap_server": "imap.gmail.com"
}

result = process_bank_statements.remote(
    email_config=email_config,
    days_back=30
)

print(f"Processed {result['total_transactions']} transactions")
```

### PDF Analysis

```python
# Read PDF file
with open("statement.pdf", "rb") as f:
    pdf_content = f.read()

pdf_contents = {"statement.pdf": pdf_content}

result = analyze_uploaded_statements.remote(
    pdf_contents=pdf_contents,
    passwords={"statement.pdf": "optional_password"}
)

print(result['analysis'])
```

## Monitoring and Logs

### View Logs
```bash
modal logs spend-analyzer-mcp-bmt
```

### Monitor Functions
```bash
modal stats spend-analyzer-mcp-bmt
```

### View Volumes
```bash
modal volume list
```

## Troubleshooting

### Common Issues

1. **Import Errors**: Ensure all dependencies are in the Modal image
2. **Secret Access**: Verify secrets are created with correct names
3. **PDF Processing**: Check file permissions and password requirements
4. **API Limits**: Monitor usage for both Claude and SambaNova

### Debug Mode

Enable debug logging in Modal functions:

```python
import logging
logging.basicConfig(level=logging.DEBUG)
```

### Local Testing

Test functions locally before deployment:

```bash
modal run modal_deployment.py::main
```

## Security Considerations

1. **API Keys**: Store in Modal secrets, never in code
2. **Email Passwords**: Use app-specific passwords
3. **PDF Data**: Processed in memory, not stored permanently
4. **User Data**: Isolated by user ID in persistent storage

## Cost Optimization

1. **Function Timeouts**: Set appropriate timeouts for each function
2. **Memory Allocation**: Adjust based on PDF processing needs
3. **API Provider**: Choose between Claude (quality) and SambaNova (cost)
4. **Batch Processing**: Process multiple PDFs in single function call

## Scaling

Modal automatically handles scaling based on demand:

- **Cold Starts**: ~2-3 seconds for new containers
- **Warm Containers**: Sub-second response times
- **Concurrent Requests**: Automatically scaled
- **Resource Limits**: Configurable per function

## Integration with MCP

The deployment includes a webhook endpoint for MCP integration:

```
POST https://your-modal-app.modal.run/mcp_webhook
```

This enables integration with Claude Desktop and other MCP clients.

## Support

For deployment issues:

1. Check Modal logs and documentation
2. Verify API key permissions
3. Test with minimal examples
4. Contact Modal support for platform issues

## Next Steps

After successful deployment:

1. Test all functions with real data
2. Set up monitoring and alerts
3. Configure backup strategies
4. Implement additional security measures
5. Scale based on usage patterns