AbeerTrial's picture
Duplicate from AbeerTrial/SOAPAssist
35b22df
raw
history blame
6.66 kB
"""Qdrant vector store index.
An index that is built on top of an existing Qdrant collection.
"""
import logging
from typing import Any, List, Optional, cast
from gpt_index.data_structs.data_structs import Node
from gpt_index.utils import get_new_id
from gpt_index.vector_stores.types import (
NodeEmbeddingResult,
VectorStore,
VectorStoreQueryResult,
)
class QdrantVectorStore(VectorStore):
"""Qdrant Vector Store.
In this vector store, embeddings and docs are stored within a
Qdrant collection.
During query time, the index uses Qdrant to query for the top
k most similar nodes.
Args:
collection_name: (str): name of the Qdrant collection
client (Optional[Any]): QdrantClient instance from `qdrant-client` package
"""
stores_text: bool = True
def __init__(
self, collection_name: str, client: Optional[Any] = None, **kwargs: Any
) -> None:
"""Init params."""
import_err_msg = (
"`qdrant-client` package not found, please run `pip install qdrant-client`"
)
try:
import qdrant_client # noqa: F401
except ImportError:
raise ImportError(import_err_msg)
if client is None:
raise ValueError("client cannot be None.")
self._client = cast(qdrant_client.QdrantClient, client)
self._collection_name = collection_name
self._collection_initialized = self._collection_exists(collection_name)
@property
def config_dict(self) -> dict:
"""Return config dict."""
return {
"collection_name": self._collection_name,
}
def add(self, embedding_results: List[NodeEmbeddingResult]) -> List[str]:
"""Add embedding results to index.
Args
embedding_results: List[NodeEmbeddingResult]: list of embedding results
"""
from qdrant_client.http import models as rest
from qdrant_client.http.exceptions import UnexpectedResponse
ids = []
for result in embedding_results:
new_id = result.id
node = result.node
text_embedding = result.embedding
collection_name = self._collection_name
# assign a new_id if current_id conflicts with existing ids
while True:
try:
self._client.http.points_api.get_point(
collection_name=collection_name, id=new_id
)
except UnexpectedResponse:
break
new_id = get_new_id(set())
# Create the Qdrant collection, if it does not exist yet
if not self._collection_initialized:
self._create_collection(
collection_name=collection_name,
vector_size=len(text_embedding),
)
self._collection_initialized = True
payload = {
"doc_id": result.doc_id,
"text": node.get_text(),
"index": node.index,
}
self._client.upsert(
collection_name=collection_name,
points=[
rest.PointStruct(
id=new_id,
vector=text_embedding,
payload=payload,
)
],
)
ids.append(new_id)
return ids
def delete(self, doc_id: str, **delete_kwargs: Any) -> None:
"""Delete a document.
Args:
doc_id: (str): document id
"""
from qdrant_client.http import models as rest
self._client.delete(
collection_name=self._collection_name,
points_selector=rest.Filter(
must=[
rest.FieldCondition(
key="doc_id", match=rest.MatchValue(value=doc_id)
)
]
),
)
@property
def client(self) -> Any:
"""Return the Qdrant client."""
return self._client
def _create_collection(self, collection_name: str, vector_size: int) -> None:
"""Create a Qdrant collection."""
from qdrant_client.http import models as rest
self._client.recreate_collection(
collection_name=collection_name,
vectors_config=rest.VectorParams(
size=vector_size,
distance=rest.Distance.COSINE,
),
)
def _collection_exists(self, collection_name: str) -> bool:
"""Check if a collection exists."""
from qdrant_client.http.exceptions import UnexpectedResponse
try:
response = self._client.http.collections_api.get_collection(collection_name)
return response.result is not None
except UnexpectedResponse:
return False
def query(
self,
query_embedding: List[float],
similarity_top_k: int,
doc_ids: Optional[List[str]] = None,
) -> VectorStoreQueryResult:
"""Query index for top k most similar nodes.
Args:
query_embedding (List[float]): query embedding
similarity_top_k (int): top k most similar nodes
doc_ids (Optional[List[str]]): list of doc_ids to filter by
"""
from qdrant_client.http.models.models import (
FieldCondition,
Filter,
MatchValue,
Payload,
)
response = self._client.search(
collection_name=self._collection_name,
query_vector=query_embedding,
limit=cast(int, similarity_top_k),
query_filter=None
if not doc_ids
else Filter(
must=[
Filter(
should=[
FieldCondition(key="doc_id", match=MatchValue(value=doc_id))
for doc_id in doc_ids
],
)
]
),
)
logging.debug(f"> Top {len(response)} nodes:")
nodes = []
similarities = []
ids = []
for point in response:
payload = cast(Payload, point.payload)
node = Node(
ref_doc_id=payload.get("doc_id"),
text=payload.get("text"),
)
nodes.append(node)
similarities.append(point.score)
ids.append(str(point.id))
return VectorStoreQueryResult(nodes=nodes, similarities=similarities, ids=ids)