Spaces:
Runtime error
Runtime error
File size: 6,657 Bytes
35b22df |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 |
"""Qdrant vector store index.
An index that is built on top of an existing Qdrant collection.
"""
import logging
from typing import Any, List, Optional, cast
from gpt_index.data_structs.data_structs import Node
from gpt_index.utils import get_new_id
from gpt_index.vector_stores.types import (
NodeEmbeddingResult,
VectorStore,
VectorStoreQueryResult,
)
class QdrantVectorStore(VectorStore):
"""Qdrant Vector Store.
In this vector store, embeddings and docs are stored within a
Qdrant collection.
During query time, the index uses Qdrant to query for the top
k most similar nodes.
Args:
collection_name: (str): name of the Qdrant collection
client (Optional[Any]): QdrantClient instance from `qdrant-client` package
"""
stores_text: bool = True
def __init__(
self, collection_name: str, client: Optional[Any] = None, **kwargs: Any
) -> None:
"""Init params."""
import_err_msg = (
"`qdrant-client` package not found, please run `pip install qdrant-client`"
)
try:
import qdrant_client # noqa: F401
except ImportError:
raise ImportError(import_err_msg)
if client is None:
raise ValueError("client cannot be None.")
self._client = cast(qdrant_client.QdrantClient, client)
self._collection_name = collection_name
self._collection_initialized = self._collection_exists(collection_name)
@property
def config_dict(self) -> dict:
"""Return config dict."""
return {
"collection_name": self._collection_name,
}
def add(self, embedding_results: List[NodeEmbeddingResult]) -> List[str]:
"""Add embedding results to index.
Args
embedding_results: List[NodeEmbeddingResult]: list of embedding results
"""
from qdrant_client.http import models as rest
from qdrant_client.http.exceptions import UnexpectedResponse
ids = []
for result in embedding_results:
new_id = result.id
node = result.node
text_embedding = result.embedding
collection_name = self._collection_name
# assign a new_id if current_id conflicts with existing ids
while True:
try:
self._client.http.points_api.get_point(
collection_name=collection_name, id=new_id
)
except UnexpectedResponse:
break
new_id = get_new_id(set())
# Create the Qdrant collection, if it does not exist yet
if not self._collection_initialized:
self._create_collection(
collection_name=collection_name,
vector_size=len(text_embedding),
)
self._collection_initialized = True
payload = {
"doc_id": result.doc_id,
"text": node.get_text(),
"index": node.index,
}
self._client.upsert(
collection_name=collection_name,
points=[
rest.PointStruct(
id=new_id,
vector=text_embedding,
payload=payload,
)
],
)
ids.append(new_id)
return ids
def delete(self, doc_id: str, **delete_kwargs: Any) -> None:
"""Delete a document.
Args:
doc_id: (str): document id
"""
from qdrant_client.http import models as rest
self._client.delete(
collection_name=self._collection_name,
points_selector=rest.Filter(
must=[
rest.FieldCondition(
key="doc_id", match=rest.MatchValue(value=doc_id)
)
]
),
)
@property
def client(self) -> Any:
"""Return the Qdrant client."""
return self._client
def _create_collection(self, collection_name: str, vector_size: int) -> None:
"""Create a Qdrant collection."""
from qdrant_client.http import models as rest
self._client.recreate_collection(
collection_name=collection_name,
vectors_config=rest.VectorParams(
size=vector_size,
distance=rest.Distance.COSINE,
),
)
def _collection_exists(self, collection_name: str) -> bool:
"""Check if a collection exists."""
from qdrant_client.http.exceptions import UnexpectedResponse
try:
response = self._client.http.collections_api.get_collection(collection_name)
return response.result is not None
except UnexpectedResponse:
return False
def query(
self,
query_embedding: List[float],
similarity_top_k: int,
doc_ids: Optional[List[str]] = None,
) -> VectorStoreQueryResult:
"""Query index for top k most similar nodes.
Args:
query_embedding (List[float]): query embedding
similarity_top_k (int): top k most similar nodes
doc_ids (Optional[List[str]]): list of doc_ids to filter by
"""
from qdrant_client.http.models.models import (
FieldCondition,
Filter,
MatchValue,
Payload,
)
response = self._client.search(
collection_name=self._collection_name,
query_vector=query_embedding,
limit=cast(int, similarity_top_k),
query_filter=None
if not doc_ids
else Filter(
must=[
Filter(
should=[
FieldCondition(key="doc_id", match=MatchValue(value=doc_id))
for doc_id in doc_ids
],
)
]
),
)
logging.debug(f"> Top {len(response)} nodes:")
nodes = []
similarities = []
ids = []
for point in response:
payload = cast(Payload, point.payload)
node = Node(
ref_doc_id=payload.get("doc_id"),
text=payload.get("text"),
)
nodes.append(node)
similarities.append(point.score)
ids.append(str(point.id))
return VectorStoreQueryResult(nodes=nodes, similarities=similarities, ids=ids)
|