Spaces:
Sleeping
Sleeping
import torch | |
from torch import nn | |
import torchvision | |
import os | |
from timeit import default_timer as timer | |
from typing import Tuple, Dict | |
def create_effnetb2_model(num_classes: int = 3, seed: int = 42): | |
weights = torchvision.models.EfficientNet_B2_Weights.DEFAULT | |
transforms = weights.transforms() | |
model = torchvision.models.efficientnet_b2(weights=weights) | |
for param in model.parameters(): | |
param.requires_grad = False | |
torch.manual_seed(seed) | |
model.classifier = nn.Sequential( | |
nn.Dropout(p=0.3, inplace=True), | |
nn.Linear(in_features=1408, out_features=num_classes), | |
) | |
return model, transforms | |
def pred(img, effnetb2, effnetb2_transforms, class_names) -> Tuple[Dict, float]: | |
start = timer() | |
img = effnetb2_transforms(img).unsqueeze(0) | |
with torch.inference_mode(): | |
pred_probs = torch.softmax(effnetb2(img), dim=1) | |
pred_labels_and_probs = { | |
class_names[i]: float(pred_probs[0][i]) for i in range(len(class_names)) | |
} | |
end = timer() | |
pred_time = round(end - start, 4) | |
return pred_labels_and_probs, pred_time | |