Spaces:
Sleeping
Sleeping
File size: 1,114 Bytes
3ca3084 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 |
import torch
from torch import nn
import torchvision
import os
from timeit import default_timer as timer
from typing import Tuple, Dict
def create_effnetb2_model(num_classes: int = 3, seed: int = 42):
weights = torchvision.models.EfficientNet_B2_Weights.DEFAULT
transforms = weights.transforms()
model = torchvision.models.efficientnet_b2(weights=weights)
for param in model.parameters():
param.requires_grad = False
torch.manual_seed(seed)
model.classifier = nn.Sequential(
nn.Dropout(p=0.3, inplace=True),
nn.Linear(in_features=1408, out_features=num_classes),
)
return model, transforms
def pred(img, effnetb2, effnetb2_transforms, class_names) -> Tuple[Dict, float]:
start = timer()
img = effnetb2_transforms(img).unsqueeze(0)
with torch.inference_mode():
pred_probs = torch.softmax(effnetb2(img), dim=1)
pred_labels_and_probs = {
class_names[i]: float(pred_probs[0][i]) for i in range(len(class_names))
}
end = timer()
pred_time = round(end - start, 4)
return pred_labels_and_probs, pred_time
|