import torch from torch import nn import torchvision import os from timeit import default_timer as timer from typing import Tuple, Dict def create_effnetb2_model(num_classes: int = 3, seed: int = 42): weights = torchvision.models.EfficientNet_B2_Weights.DEFAULT transforms = weights.transforms() model = torchvision.models.efficientnet_b2(weights=weights) for param in model.parameters(): param.requires_grad = False torch.manual_seed(seed) model.classifier = nn.Sequential( nn.Dropout(p=0.3, inplace=True), nn.Linear(in_features=1408, out_features=num_classes), ) return model, transforms def pred(img, effnetb2, effnetb2_transforms, class_names) -> Tuple[Dict, float]: start = timer() img = effnetb2_transforms(img).unsqueeze(0) with torch.inference_mode(): pred_probs = torch.softmax(effnetb2(img), dim=1) pred_labels_and_probs = { class_names[i]: float(pred_probs[0][i]) for i in range(len(class_names)) } end = timer() pred_time = round(end - start, 4) return pred_labels_and_probs, pred_time