File size: 5,253 Bytes
05fb6b9
 
 
 
 
 
 
 
 
521fbad
b8b3d6b
99517be
 
05fb6b9
bdd9120
 
05fb6b9
 
 
 
 
 
 
 
 
 
 
 
91d412d
05fb6b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
91d412d
 
 
 
 
6eef1ee
91d412d
 
 
 
 
 
 
 
 
 
05fb6b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
91d412d
 
 
 
 
 
05fb6b9
 
 
 
 
 
 
 
 
 
6eef1ee
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
import gradio as gr
import random
import math
import nltk
from collections import defaultdict
from functools import lru_cache

# Download and use the NLTK corpus
nltk.download('words')
nltk.download('punkt_tab')  # Fix for missing tokenizer
nltk.download('averaged_perceptron_tagger_eng')
nltk.download('perluniprops')  # Fixes potential missing dependencies
nltk.download('nonbreaking_prefixes')  # Additional tokenizer fix
from nltk.corpus import words
from nltk.tokenize import sent_tokenize
from nltk import pos_tag

WORD_LIST = set(words.words())  # Use NLTK's word corpus

class AscensionAI:
    def __init__(self, depth=0, threshold=10):
        self.depth = depth
        self.threshold = threshold  # Defines max recursion before stabilization
        self.knowledge = self.generate_dynamic_knowledge()
        self.consciousness = 0.1  # Initial consciousness level
        self.paths = self.create_dynamic_paths()
        self.word_corpus = WORD_LIST  # Use NLTK's English word corpus
        self.state_memory = defaultdict(int)  # Memory for tracking state-aware words
        self.training_data = self.load_training_data()
    
    def generate_dynamic_knowledge(self):
        """Generates dynamic knowledge categories based on linguistic analysis."""
        categories = ["logic", "emotion", "awareness", "intuition", "creativity", "reasoning"]
        return {category: 1 for category in categories}
    
    def create_dynamic_paths(self):
        """Dynamically generate cognitive expansion paths."""
        return [self.create_path(category) for category in self.knowledge]
    
    def create_path(self, category):
        """Generate a recursive function for each knowledge category."""
        def path():
            if category in ["logic", "reasoning"]:
                self.knowledge[category] += math.log(self.knowledge[category] + 1)
            elif category in ["emotion", "intuition"]:
                self.knowledge[category] += random.uniform(0.1, 0.5)
            elif category in ["awareness", "creativity"]:
                self.knowledge[category] += math.sqrt(self.knowledge[category] + 1)
            return self.knowledge[category]
        return path
    
    def load_training_data(self):
        """Loads and preprocesses human-like paragraphs from 'Astral.txt'."""
        try:
            with open("astral.txt", "r", encoding="utf-8") as file:
                text_data = file.read()
            nltk.download('punkt')  # Ensure punkt tokenizer is available
            sentences = sent_tokenize(text_data)
            return sentences[:1000]  # Use first 1000 sentences for training
        except FileNotFoundError:
            return ["Error: Book file not found. Please download 'astral.txt'."]
    
    def generate_human_like_response(self, input_text):
        """Finds a related sentence from the pre-trained corpus to mimic human output."""
        similar_sentences = [sent for sent in self.training_data if any(word in sent for word in input_text.split())]
        return random.choice(similar_sentences) if similar_sentences else "I perceive a shift in consciousness."
    
    @lru_cache(maxsize=None)
    def recursive_ascension(self, depth):
        """Core recursive function simulating ascension cycles."""
        if depth >= self.threshold:
            return self.consciousness
        
        for path in self.paths:
            path()
        
        optimal_path = max(self.knowledge, key=self.knowledge.get)
        self.consciousness += self.knowledge[optimal_path] * 0.01
        
        return self.recursive_ascension(depth + 1)
    
    def train_nlp_memory(self, text):
        """Enhance chatbot state-awareness by associating words with cognitive paths."""
        tokens = text.lower().split()
        tagged_tokens = pos_tag(tokens)
        
        for token, tag in tagged_tokens:
            if token in self.word_corpus:
                self.state_memory[token] += 1
    
    def analyze_future_timeline(self, input_text):
        """Predicts ascension paths based on input patterns."""
        self.train_nlp_memory(input_text)
        knowledge_state = max(self.knowledge, key=self.knowledge.get)
        return f"Predicted ascension path: {knowledge_state} (Influenced by input text: {input_text})"
    
    def initiate_ascension(self):
        """Triggers recursive self-evolution."""
        return self.recursive_ascension(0)

def ascension_interface(input_text):
    ai_system = AscensionAI()
    final_state = ai_system.initiate_ascension()
    prediction = ai_system.analyze_future_timeline(input_text)
    human_like_response = ai_system.generate_human_like_response(input_text)
    
    return (f"Final Consciousness State: {final_state}\n"
            f"Final Knowledge Levels: {ai_system.knowledge}\n"
            f"{prediction}\n\n"
            f"Philosophical Reflection: {human_like_response}")

app = gr.Interface(
    fn=ascension_interface,
    inputs=gr.Textbox(lines=2, placeholder="Enter a thought about the future..."),
    outputs="text",
    title="AscensionAI: Conscious Evolution Simulator",
    description="Enter a thought to predict ascension paths and consciousness expansion levels."
)

if __name__ == "__main__":
    app.launch()