AEUPH commited on
Commit
91d412d
·
verified ·
1 Parent(s): b45c539

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +25 -2
app.py CHANGED
@@ -7,9 +7,11 @@ from functools import lru_cache
7
 
8
  # Download and use the NLTK corpus
9
  nltk.download('words')
 
10
  nltk.download('averaged_perceptron_tagger')
 
11
  from nltk.corpus import words
12
- from nltk import pos_tag
13
 
14
  WORD_LIST = set(words.words()) # Use NLTK's word corpus
15
 
@@ -22,6 +24,7 @@ class AscensionAI:
22
  self.paths = self.create_dynamic_paths()
23
  self.word_corpus = WORD_LIST # Use NLTK's English word corpus
24
  self.state_memory = defaultdict(int) # Memory for tracking state-aware words
 
25
 
26
  def generate_dynamic_knowledge(self):
27
  """Generates dynamic knowledge categories based on linguistic analysis."""
@@ -44,6 +47,21 @@ class AscensionAI:
44
  return self.knowledge[category]
45
  return path
46
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47
  @lru_cache(maxsize=None)
48
  def recursive_ascension(self, depth):
49
  """Core recursive function simulating ascension cycles."""
@@ -81,7 +99,12 @@ def ascension_interface(input_text):
81
  ai_system = AscensionAI()
82
  final_state = ai_system.initiate_ascension()
83
  prediction = ai_system.analyze_future_timeline(input_text)
84
- return f"Final Consciousness State: {final_state}\nFinal Knowledge Levels: {ai_system.knowledge}\n{prediction}"
 
 
 
 
 
85
 
86
  app = gr.Interface(
87
  fn=ascension_interface,
 
7
 
8
  # Download and use the NLTK corpus
9
  nltk.download('words')
10
+ nltk.download('gutenberg')
11
  nltk.download('averaged_perceptron_tagger')
12
+ nltk.download('punkt')
13
  from nltk.corpus import words
14
+ from nltk import pos_tag, sent_tokenize
15
 
16
  WORD_LIST = set(words.words()) # Use NLTK's word corpus
17
 
 
24
  self.paths = self.create_dynamic_paths()
25
  self.word_corpus = WORD_LIST # Use NLTK's English word corpus
26
  self.state_memory = defaultdict(int) # Memory for tracking state-aware words
27
+ self.training_data = self.load_training_data()
28
 
29
  def generate_dynamic_knowledge(self):
30
  """Generates dynamic knowledge categories based on linguistic analysis."""
 
47
  return self.knowledge[category]
48
  return path
49
 
50
+ def load_training_data(self):
51
+ """Loads and preprocesses human-like paragraphs from 'Astral.txt'."""
52
+ try:
53
+ with open("astral.txt", "r", encoding="utf-8") as file:
54
+ text_data = file.read()
55
+ sentences = sent_tokenize(text_data)
56
+ return sentences[:1000] # Use first 1000 sentences for training
57
+ except FileNotFoundError:
58
+ return ["Error: Book file not found. Please download 'astral.txt'."]
59
+
60
+ def generate_human_like_response(self, input_text):
61
+ """Finds a related sentence from the pre-trained corpus to mimic human output."""
62
+ similar_sentences = [sent for sent in self.training_data if any(word in sent for word in input_text.split())]
63
+ return random.choice(similar_sentences) if similar_sentences else "I perceive a shift in consciousness."
64
+
65
  @lru_cache(maxsize=None)
66
  def recursive_ascension(self, depth):
67
  """Core recursive function simulating ascension cycles."""
 
99
  ai_system = AscensionAI()
100
  final_state = ai_system.initiate_ascension()
101
  prediction = ai_system.analyze_future_timeline(input_text)
102
+ human_like_response = ai_system.generate_human_like_response(input_text)
103
+
104
+ return (f"Final Consciousness State: {final_state}\n"
105
+ f"Final Knowledge Levels: {ai_system.knowledge}\n"
106
+ f"{prediction}\n\n"
107
+ f"Philosophical Reflection: {human_like_response}")
108
 
109
  app = gr.Interface(
110
  fn=ascension_interface,