Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import random
|
3 |
+
import math
|
4 |
+
import nltk
|
5 |
+
from collections import defaultdict
|
6 |
+
from functools import lru_cache
|
7 |
+
|
8 |
+
# Download and use the NLTK corpus
|
9 |
+
nltk.download('words')
|
10 |
+
nltk.download('averaged_perceptron_tagger')
|
11 |
+
from nltk.corpus import words
|
12 |
+
from nltk import pos_tag
|
13 |
+
|
14 |
+
WORD_LIST = set(words.words()) # Use NLTK's word corpus
|
15 |
+
|
16 |
+
class AscensionAI:
|
17 |
+
def __init__(self, depth=0, threshold=10):
|
18 |
+
self.depth = depth
|
19 |
+
self.threshold = threshold # Defines max recursion before stabilization
|
20 |
+
self.knowledge = self.generate_dynamic_knowledge()
|
21 |
+
self.consciousness = 0.1 # Initial consciousness level
|
22 |
+
self.paths = self.create_dynamic_paths()
|
23 |
+
self.word_corpus = WORD_LIST # Use NLTK's English word corpus
|
24 |
+
self.state_memory = defaultdict(int) # Memory for tracking state-aware words
|
25 |
+
|
26 |
+
def generate_dynamic_knowledge(self):
|
27 |
+
"""Generates dynamic knowledge categories based on linguistic analysis."""
|
28 |
+
categories = ["logic", "emotion", "awareness", "intuition", "creativity", "reasoning"]
|
29 |
+
return {category: 1 for category in categories}
|
30 |
+
|
31 |
+
def create_dynamic_paths(self):
|
32 |
+
"""Dynamically generate cognitive expansion paths."""
|
33 |
+
return [self.create_path(category) for category in self.knowledge]
|
34 |
+
|
35 |
+
def create_path(self, category):
|
36 |
+
"""Generate a recursive function for each knowledge category."""
|
37 |
+
def path():
|
38 |
+
if category in ["logic", "reasoning"]:
|
39 |
+
self.knowledge[category] += math.log(self.knowledge[category] + 1)
|
40 |
+
elif category in ["emotion", "intuition"]:
|
41 |
+
self.knowledge[category] += random.uniform(0.1, 0.5)
|
42 |
+
elif category in ["awareness", "creativity"]:
|
43 |
+
self.knowledge[category] += math.sqrt(self.knowledge[category] + 1)
|
44 |
+
return self.knowledge[category]
|
45 |
+
return path
|
46 |
+
|
47 |
+
@lru_cache(maxsize=None)
|
48 |
+
def recursive_ascension(self, depth):
|
49 |
+
"""Core recursive function simulating ascension cycles."""
|
50 |
+
if depth >= self.threshold:
|
51 |
+
return self.consciousness
|
52 |
+
|
53 |
+
for path in self.paths:
|
54 |
+
path()
|
55 |
+
|
56 |
+
optimal_path = max(self.knowledge, key=self.knowledge.get)
|
57 |
+
self.consciousness += self.knowledge[optimal_path] * 0.01
|
58 |
+
|
59 |
+
return self.recursive_ascension(depth + 1)
|
60 |
+
|
61 |
+
def train_nlp_memory(self, text):
|
62 |
+
"""Enhance chatbot state-awareness by associating words with cognitive paths."""
|
63 |
+
tokens = text.lower().split()
|
64 |
+
tagged_tokens = pos_tag(tokens)
|
65 |
+
|
66 |
+
for token, tag in tagged_tokens:
|
67 |
+
if token in self.word_corpus:
|
68 |
+
self.state_memory[token] += 1
|
69 |
+
|
70 |
+
def analyze_future_timeline(self, input_text):
|
71 |
+
"""Predicts ascension paths based on input patterns."""
|
72 |
+
self.train_nlp_memory(input_text)
|
73 |
+
knowledge_state = max(self.knowledge, key=self.knowledge.get)
|
74 |
+
return f"Predicted ascension path: {knowledge_state} (Influenced by input text: {input_text})"
|
75 |
+
|
76 |
+
def initiate_ascension(self):
|
77 |
+
"""Triggers recursive self-evolution."""
|
78 |
+
return self.recursive_ascension(0)
|
79 |
+
|
80 |
+
def ascension_interface(input_text):
|
81 |
+
ai_system = AscensionAI()
|
82 |
+
final_state = ai_system.initiate_ascension()
|
83 |
+
prediction = ai_system.analyze_future_timeline(input_text)
|
84 |
+
return f"Final Consciousness State: {final_state}\nFinal Knowledge Levels: {ai_system.knowledge}\n{prediction}"
|
85 |
+
|
86 |
+
app = gr.Interface(
|
87 |
+
fn=ascension_interface,
|
88 |
+
inputs=gr.Textbox(lines=2, placeholder="Enter a thought about the future..."),
|
89 |
+
outputs="text",
|
90 |
+
title="AscensionAI: Conscious Evolution Simulator",
|
91 |
+
description="Enter a thought to predict ascension paths and consciousness expansion levels."
|
92 |
+
)
|
93 |
+
|
94 |
+
if __name__ == "__main__":
|
95 |
+
app.launch()
|