AEUPH commited on
Commit
05fb6b9
·
verified ·
1 Parent(s): b32b9d4

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +95 -0
app.py ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import random
3
+ import math
4
+ import nltk
5
+ from collections import defaultdict
6
+ from functools import lru_cache
7
+
8
+ # Download and use the NLTK corpus
9
+ nltk.download('words')
10
+ nltk.download('averaged_perceptron_tagger')
11
+ from nltk.corpus import words
12
+ from nltk import pos_tag
13
+
14
+ WORD_LIST = set(words.words()) # Use NLTK's word corpus
15
+
16
+ class AscensionAI:
17
+ def __init__(self, depth=0, threshold=10):
18
+ self.depth = depth
19
+ self.threshold = threshold # Defines max recursion before stabilization
20
+ self.knowledge = self.generate_dynamic_knowledge()
21
+ self.consciousness = 0.1 # Initial consciousness level
22
+ self.paths = self.create_dynamic_paths()
23
+ self.word_corpus = WORD_LIST # Use NLTK's English word corpus
24
+ self.state_memory = defaultdict(int) # Memory for tracking state-aware words
25
+
26
+ def generate_dynamic_knowledge(self):
27
+ """Generates dynamic knowledge categories based on linguistic analysis."""
28
+ categories = ["logic", "emotion", "awareness", "intuition", "creativity", "reasoning"]
29
+ return {category: 1 for category in categories}
30
+
31
+ def create_dynamic_paths(self):
32
+ """Dynamically generate cognitive expansion paths."""
33
+ return [self.create_path(category) for category in self.knowledge]
34
+
35
+ def create_path(self, category):
36
+ """Generate a recursive function for each knowledge category."""
37
+ def path():
38
+ if category in ["logic", "reasoning"]:
39
+ self.knowledge[category] += math.log(self.knowledge[category] + 1)
40
+ elif category in ["emotion", "intuition"]:
41
+ self.knowledge[category] += random.uniform(0.1, 0.5)
42
+ elif category in ["awareness", "creativity"]:
43
+ self.knowledge[category] += math.sqrt(self.knowledge[category] + 1)
44
+ return self.knowledge[category]
45
+ return path
46
+
47
+ @lru_cache(maxsize=None)
48
+ def recursive_ascension(self, depth):
49
+ """Core recursive function simulating ascension cycles."""
50
+ if depth >= self.threshold:
51
+ return self.consciousness
52
+
53
+ for path in self.paths:
54
+ path()
55
+
56
+ optimal_path = max(self.knowledge, key=self.knowledge.get)
57
+ self.consciousness += self.knowledge[optimal_path] * 0.01
58
+
59
+ return self.recursive_ascension(depth + 1)
60
+
61
+ def train_nlp_memory(self, text):
62
+ """Enhance chatbot state-awareness by associating words with cognitive paths."""
63
+ tokens = text.lower().split()
64
+ tagged_tokens = pos_tag(tokens)
65
+
66
+ for token, tag in tagged_tokens:
67
+ if token in self.word_corpus:
68
+ self.state_memory[token] += 1
69
+
70
+ def analyze_future_timeline(self, input_text):
71
+ """Predicts ascension paths based on input patterns."""
72
+ self.train_nlp_memory(input_text)
73
+ knowledge_state = max(self.knowledge, key=self.knowledge.get)
74
+ return f"Predicted ascension path: {knowledge_state} (Influenced by input text: {input_text})"
75
+
76
+ def initiate_ascension(self):
77
+ """Triggers recursive self-evolution."""
78
+ return self.recursive_ascension(0)
79
+
80
+ def ascension_interface(input_text):
81
+ ai_system = AscensionAI()
82
+ final_state = ai_system.initiate_ascension()
83
+ prediction = ai_system.analyze_future_timeline(input_text)
84
+ return f"Final Consciousness State: {final_state}\nFinal Knowledge Levels: {ai_system.knowledge}\n{prediction}"
85
+
86
+ app = gr.Interface(
87
+ fn=ascension_interface,
88
+ inputs=gr.Textbox(lines=2, placeholder="Enter a thought about the future..."),
89
+ outputs="text",
90
+ title="AscensionAI: Conscious Evolution Simulator",
91
+ description="Enter a thought to predict ascension paths and consciousness expansion levels."
92
+ )
93
+
94
+ if __name__ == "__main__":
95
+ app.launch()