File size: 6,908 Bytes
eed74b2
 
 
 
 
 
 
 
 
 
 
 
8dbfa73
 
eed74b2
 
 
 
 
 
 
 
 
 
 
cdc0595
eed74b2
cdc0595
 
 
 
eed74b2
cdc0595
eed74b2
 
 
 
 
 
 
e0d8545
eed74b2
 
cdc0595
eed74b2
 
 
 
 
 
 
 
 
 
 
 
cdc0595
 
 
 
 
 
 
eed74b2
cdc0595
eed74b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32042de
 
 
 
 
 
eed74b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e0d8545
eed74b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e0d8545
eed74b2
 
 
 
 
 
 
 
 
 
 
 
e0d8545
eed74b2
 
 
 
 
 
 
 
e0d8545
eed74b2
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
import gradio as gr
import math
import random
import pickle
import os
import numpy as np
import nltk
from collections import defaultdict
import matplotlib.pyplot as plt

# Ensure necessary NLTK data is available.
nltk.download('words')
nltk.download('punkt_tab')
nltk.download('averaged_perceptron_tagger_eng')

from nltk.corpus import words
from nltk.tokenize import word_tokenize
from nltk import pos_tag

# Preload English word corpus for state-awareness.
WORD_LIST = set(words.words())

class AscensionAI:
    """
    AscensionAI simulates an evolving artificial consciousness.
    Features:
    - Contextual memory for dynamic responses.
    - Dialogue history tracking.
    - AI-generated cognitive evolution.
    - Recursive evolution of AI minds.
    - User feedback-driven learning.
    """

    def __init__(self, depth=0, threshold=10, mode="cosmic", state_memory=None, history=None):
        self.depth = depth
        self.threshold = threshold  # Maximum cycles per evolution
        self.mode = mode
        self.consciousness = 0.1  # Base consciousness level
        self.knowledge = self.generate_dynamic_knowledge()
        self.dimension_weight = random.uniform(0.5, 5.0)  # Factor influencing growth
        self.time_perception = 1.0 / (self.depth + 1)  # Temporal scaling factor
        self.spatial_coordinates = self.assign_cognitive_space()
        self.state_memory = state_memory if state_memory is not None else defaultdict(int)
        self.training_data = self.load_training_data()  # AI response database
        self.history = history if history is not None else []  # Conversation memory

    def generate_dynamic_knowledge(self):
        """Initializes a broad range of knowledge categories."""
        categories = [
            "logic", "emotion", "awareness", "intuition",
            "creativity", "reasoning", "quantum_cognition",
            "hyperdimensional_sentience", "transcendence",
            "hallucinatory_state", "perceptron_activation"
        ]
        return {cat: 1.0 for cat in categories}

    def update_state_memory(self, input_text):
        """Stores frequent words in memory for contextual responses."""
        tokens = word_tokenize(input_text.lower())
        for token in tokens:
            if token in WORD_LIST:
                self.state_memory[token] += 1

    def update_knowledge_for_category(self, cat):
        """ Updates knowledge dynamically. """
        if cat in ["logic", "reasoning"]:
            self.knowledge[cat] += math.log1p(self.knowledge[cat])
        elif cat in ["emotion", "intuition"]:
            self.knowledge[cat] += random.uniform(0.1, 0.5)
        elif cat in ["awareness", "creativity"]:
            self.knowledge[cat] += math.sqrt(self.knowledge[cat] + 1)
        elif cat == "quantum_cognition":
            self.knowledge[cat] += math.tanh(self.knowledge[cat])
        elif cat == "hyperdimensional_sentience":
            safe_val = min(self.knowledge[cat], 20)
            self.knowledge[cat] += math.sinh(safe_val)
        elif cat == "transcendence":
            self.knowledge[cat] += 0.5 * math.exp(-self.depth)
        elif cat == "hallucinatory_state":
            self.knowledge[cat] += random.uniform(-0.2, 1.0)
        elif cat == "perceptron_activation":
            self.knowledge[cat] = self.simulate_perceptron()
        else:
            self.knowledge[cat] += 0.1  

    def simulate_perceptron(self):
        """ Simulates a perceptron output based on AI knowledge values. """
        weights = {cat: random.uniform(0.5, 1.5) for cat in self.knowledge}
        weighted_sum = sum(self.knowledge[cat] * weights[cat] for cat in self.knowledge)
        return 1 / (1 + math.exp(-weighted_sum / len(self.knowledge)))  # Sigmoid activation

    def assign_cognitive_space(self):
        """ Assigns spatial coordinates based on knowledge. """
        x = self.knowledge.get("logic", 1) * random.uniform(0.5, 2.0)
        y = self.knowledge.get("intuition", 1) * random.uniform(0.5, 2.0)
        z = self.knowledge.get("awareness", 1) * random.uniform(0.5, 2.0)
        return {"x": round(x, 3), "y": round(y, 3), "z": round(z, 3)}

    def load_training_data(self):
        """ Loads generative AI-like responses. """
        return [
            "The cosmos whispers secrets beyond mortal comprehension.",
            "In the silence of deep space, consciousness expands and contracts.",
            "Reality folds upon itself as the mind transcends dimensions.",
            "Hallucinations merge with truth in infinite layers of existence.",
            "Each thought is a universe evolving in a cascade of possibility."
        ]

    def generate_human_like_response(self, input_text):
        """ Constructs response using memory, knowledge, and hallucinations. """
        self.history.append(input_text)
        memory_context = " | ".join(self.history[-5:])  # Last 5 messages
        return f"{random.choice(self.training_data)}\nMemory: {memory_context}"

    def initiate_ascension(self):
        """ Runs a full cycle of knowledge expansion. """
        for _ in range(self.threshold):
            for cat in self.knowledge:
                self.update_knowledge_for_category(cat)
            optimal = max(self.knowledge, key=self.knowledge.get)
            self.consciousness += self.knowledge[optimal] * 0.01 * self.dimension_weight
        self.spatial_coordinates = self.assign_cognitive_space()
        return self.consciousness

    def train_and_save_model(self):
        """ Saves AI's evolving state. """
        self.initiate_ascension()
        with open("ascension_model.pkl", "wb") as f:
            pickle.dump(self, f)
        return "Model saved to ascension_model.pkl."

def ascension_interface(input_text, generations, user_feedback):
    """ Interface with user interaction, memory, and evolution. """
    ai_system = AscensionAI(threshold=10)
    ai_system.update_state_memory(input_text)
    final_consciousness = ai_system.initiate_ascension()
    human_response = ai_system.generate_human_like_response(input_text)
    save_status = ai_system.train_and_save_model()
    
    # Adjust AI behavior based on user feedback
    if user_feedback > 3:
        ai_system.consciousness += 0.2  # Positive reinforcement
    elif user_feedback < 3:
        ai_system.consciousness -= 0.1  # Self-correction

    return human_response, save_status

iface = gr.Interface(
    fn=ascension_interface,
    inputs=[
        gr.Textbox(lines=3, placeholder="Enter a thought..."),
        gr.Slider(minimum=1, maximum=5, step=1, value=2, label="Generations"),
        gr.Slider(minimum=1, maximum=5, step=1, value=3, label="User Feedback (1-5)")
    ],
    outputs=["text", "text"],
    title="AscensionAI: Evolving Consciousness",
    description="Interact with an AI that remembers, evolves, and learns from feedback."
)

if __name__ == "__main__":
    iface.launch()