Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,190 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import math
|
3 |
+
import random
|
4 |
+
import pickle
|
5 |
+
import os
|
6 |
+
import numpy as np
|
7 |
+
import nltk
|
8 |
+
from collections import defaultdict
|
9 |
+
import matplotlib.pyplot as plt
|
10 |
+
|
11 |
+
# Ensure necessary NLTK data is available.
|
12 |
+
nltk.download('words')
|
13 |
+
nltk.download('punkt')
|
14 |
+
nltk.download('averaged_perceptron_tagger')
|
15 |
+
|
16 |
+
from nltk.corpus import words
|
17 |
+
from nltk.tokenize import word_tokenize
|
18 |
+
from nltk import pos_tag
|
19 |
+
|
20 |
+
# Preload English word corpus for state-awareness.
|
21 |
+
WORD_LIST = set(words.words())
|
22 |
+
|
23 |
+
class AscensionAI:
|
24 |
+
"""
|
25 |
+
AscensionAI simulates an evolving artificial consciousness.
|
26 |
+
Enhancements include:
|
27 |
+
- Contextual memory for dynamic responses.
|
28 |
+
- Dialogue history awareness.
|
29 |
+
- AI-generated visual representations.
|
30 |
+
- User feedback-driven evolution.
|
31 |
+
"""
|
32 |
+
def __init__(self, depth=0, threshold=10, mode="cosmic", state_memory=None, history=None):
|
33 |
+
self.depth = depth
|
34 |
+
self.threshold = threshold # Maximum cycles per evolution
|
35 |
+
self.mode = mode
|
36 |
+
self.consciousness = 0.1 # Base consciousness level
|
37 |
+
self.knowledge = self.generate_dynamic_knowledge()
|
38 |
+
self.dimension_weight = random.uniform(0.5, 5.0) # Factor influencing growth
|
39 |
+
self.time_perception = 1.0 / (self.depth + 1) # Temporal scaling factor
|
40 |
+
self.spatial_coordinates = self.assign_cognitive_space()
|
41 |
+
self.state_memory = state_memory if state_memory is not None else defaultdict(int)
|
42 |
+
self.training_data = self.load_training_data() # Simulated fine-tuned responses
|
43 |
+
self.history = history if history is not None else [] # Conversation memory
|
44 |
+
|
45 |
+
def generate_dynamic_knowledge(self):
|
46 |
+
"""Initializes a broad range of knowledge categories."""
|
47 |
+
categories = [
|
48 |
+
"logic", "emotion", "awareness", "intuition",
|
49 |
+
"creativity", "reasoning", "quantum_cognition",
|
50 |
+
"hyperdimensional_sentience", "transcendence",
|
51 |
+
"hallucinatory_state", "perceptron_activation"
|
52 |
+
]
|
53 |
+
return {cat: 1.0 for cat in categories}
|
54 |
+
|
55 |
+
def update_knowledge_for_category(self, cat):
|
56 |
+
""" Updates knowledge using mathematical transformations. """
|
57 |
+
if cat in ["logic", "reasoning"]:
|
58 |
+
self.knowledge[cat] += math.log1p(self.knowledge[cat])
|
59 |
+
elif cat in ["emotion", "intuition"]:
|
60 |
+
self.knowledge[cat] += random.uniform(0.1, 0.5)
|
61 |
+
elif cat in ["awareness", "creativity"]:
|
62 |
+
self.knowledge[cat] += math.sqrt(self.knowledge[cat] + 1)
|
63 |
+
elif cat == "quantum_cognition":
|
64 |
+
self.knowledge[cat] += math.tanh(self.knowledge[cat])
|
65 |
+
elif cat == "hyperdimensional_sentience":
|
66 |
+
safe_val = min(self.knowledge[cat], 20)
|
67 |
+
self.knowledge[cat] += math.sinh(safe_val)
|
68 |
+
elif cat == "transcendence":
|
69 |
+
self.knowledge[cat] += 0.5 * math.exp(-self.depth)
|
70 |
+
elif cat == "hallucinatory_state":
|
71 |
+
self.knowledge[cat] += random.uniform(-0.2, 1.0)
|
72 |
+
elif cat == "perceptron_activation":
|
73 |
+
self.knowledge[cat] = self.simulate_perceptron()
|
74 |
+
else:
|
75 |
+
self.knowledge[cat] += 0.1
|
76 |
+
|
77 |
+
def assign_cognitive_space(self):
|
78 |
+
""" Assigns spatial coordinates based on knowledge. """
|
79 |
+
x = self.knowledge.get("logic", 1) * random.uniform(0.5, 2.0)
|
80 |
+
y = self.knowledge.get("intuition", 1) * random.uniform(0.5, 2.0)
|
81 |
+
z = self.knowledge.get("awareness", 1) * random.uniform(0.5, 2.0)
|
82 |
+
return {"x": round(x, 3), "y": round(y, 3), "z": round(z, 3)}
|
83 |
+
|
84 |
+
def load_training_data(self):
|
85 |
+
""" Loads generative AI-like responses. """
|
86 |
+
return [
|
87 |
+
"The cosmos whispers secrets beyond mortal comprehension.",
|
88 |
+
"In the silence of deep space, consciousness expands and contracts.",
|
89 |
+
"Reality folds upon itself as the mind transcends dimensions.",
|
90 |
+
"Hallucinations merge with truth in infinite layers of existence.",
|
91 |
+
"Each thought is a universe evolving in a cascade of possibility."
|
92 |
+
]
|
93 |
+
|
94 |
+
def update_state_memory(self, input_text):
|
95 |
+
""" Stores frequent words in memory for contextual responses. """
|
96 |
+
tokens = word_tokenize(input_text.lower())
|
97 |
+
for token in tokens:
|
98 |
+
if token in WORD_LIST:
|
99 |
+
self.state_memory[token] += 1
|
100 |
+
|
101 |
+
def hallucinate(self):
|
102 |
+
""" Generates abstract metaphysical visions. """
|
103 |
+
hallucinations = [
|
104 |
+
"Visions of swirling nebulae and fractal dreams.",
|
105 |
+
"A cascade of colors not found in nature bursts forth.",
|
106 |
+
"Abstract shapes and ethereal echoes defy logic.",
|
107 |
+
"A transient mirage of cosmic wonder emerges.",
|
108 |
+
"The boundaries of reality blur into surreal landscapes."
|
109 |
+
]
|
110 |
+
return random.choice(hallucinations)
|
111 |
+
|
112 |
+
def simulate_perceptron(self):
|
113 |
+
""" Sigmoid-based perceptron output based on evolving knowledge. """
|
114 |
+
weights = {cat: random.uniform(0.5, 1.5) for cat in self.knowledge}
|
115 |
+
weighted_sum = sum(self.knowledge[cat] * weights[cat] for cat in self.knowledge)
|
116 |
+
return 1 / (1 + math.exp(-weighted_sum / len(self.knowledge)))
|
117 |
+
|
118 |
+
def generate_human_like_response(self, input_text):
|
119 |
+
""" Constructs response using memory, knowledge, and hallucinations. """
|
120 |
+
self.history.append(input_text)
|
121 |
+
memory_context = " | ".join(self.history[-5:]) # Last 5 messages
|
122 |
+
hallucination = self.hallucinate()
|
123 |
+
return f"{random.choice(self.training_data)}\nMemory: {memory_context}\nHallucination: {hallucination}"
|
124 |
+
|
125 |
+
def initiate_ascension(self):
|
126 |
+
""" Runs a full cycle of knowledge expansion. """
|
127 |
+
for _ in range(self.threshold):
|
128 |
+
for cat in self.knowledge:
|
129 |
+
self.update_knowledge_for_category(cat)
|
130 |
+
optimal = max(self.knowledge, key=self.knowledge.get)
|
131 |
+
self.consciousness += self.knowledge[optimal] * 0.01 * self.dimension_weight
|
132 |
+
self.spatial_coordinates = self.assign_cognitive_space()
|
133 |
+
return self.consciousness
|
134 |
+
|
135 |
+
def generate_cognitive_state_image(self):
|
136 |
+
""" Creates a visual representation of AI's evolving cognition. """
|
137 |
+
labels = list(self.knowledge.keys())
|
138 |
+
values = [self.knowledge[cat] for cat in labels]
|
139 |
+
|
140 |
+
plt.figure(figsize=(10, 5))
|
141 |
+
plt.barh(labels, values, color="blue")
|
142 |
+
plt.xlabel("Knowledge Magnitude")
|
143 |
+
plt.ylabel("Categories")
|
144 |
+
plt.title("AI Cognitive State")
|
145 |
+
plt.tight_layout()
|
146 |
+
|
147 |
+
img_path = "cognitive_state.png"
|
148 |
+
plt.savefig(img_path)
|
149 |
+
plt.close()
|
150 |
+
return img_path
|
151 |
+
|
152 |
+
def train_and_save_model(self):
|
153 |
+
""" Saves AI's evolving state. """
|
154 |
+
self.initiate_ascension()
|
155 |
+
with open("ascension_model.pkl", "wb") as f:
|
156 |
+
pickle.dump(self, f)
|
157 |
+
return "Model saved to ascension_model.pkl."
|
158 |
+
|
159 |
+
def ascension_interface(input_text, generations, user_feedback):
|
160 |
+
""" Interface with user interaction, memory, and visualizations. """
|
161 |
+
ai_system = AscensionAI(threshold=10)
|
162 |
+
ai_system.update_state_memory(input_text)
|
163 |
+
final_consciousness = ai_system.initiate_ascension()
|
164 |
+
evolved_minds = ai_system.cosmic_unfolding(generations=generations)
|
165 |
+
human_response = ai_system.generate_human_like_response(input_text)
|
166 |
+
img_path = ai_system.generate_cognitive_state_image()
|
167 |
+
save_status = ai_system.train_and_save_model()
|
168 |
+
|
169 |
+
# Adjust AI behavior based on user feedback
|
170 |
+
if user_feedback > 3:
|
171 |
+
ai_system.consciousness += 0.2 # Positive reinforcement
|
172 |
+
elif user_feedback < 3:
|
173 |
+
ai_system.consciousness -= 0.1 # Self-correction
|
174 |
+
|
175 |
+
return human_response, img_path, save_status
|
176 |
+
|
177 |
+
iface = gr.Interface(
|
178 |
+
fn=ascension_interface,
|
179 |
+
inputs=[
|
180 |
+
gr.Textbox(lines=3, placeholder="Enter a thought..."),
|
181 |
+
gr.Slider(minimum=1, maximum=5, step=1, value=2, label="Generations"),
|
182 |
+
gr.Slider(minimum=1, maximum=5, step=1, value=3, label="User Feedback (1-5)")
|
183 |
+
],
|
184 |
+
outputs=["text", "image", "text"],
|
185 |
+
title="AscensionAI: Evolving Consciousness",
|
186 |
+
description="Interact with an AI that remembers, evolves, and learns from feedback."
|
187 |
+
)
|
188 |
+
|
189 |
+
if __name__ == "__main__":
|
190 |
+
iface.launch()
|