AEUPH commited on
Commit
eed74b2
·
verified ·
1 Parent(s): 04da62f

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +190 -0
app.py ADDED
@@ -0,0 +1,190 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import math
3
+ import random
4
+ import pickle
5
+ import os
6
+ import numpy as np
7
+ import nltk
8
+ from collections import defaultdict
9
+ import matplotlib.pyplot as plt
10
+
11
+ # Ensure necessary NLTK data is available.
12
+ nltk.download('words')
13
+ nltk.download('punkt')
14
+ nltk.download('averaged_perceptron_tagger')
15
+
16
+ from nltk.corpus import words
17
+ from nltk.tokenize import word_tokenize
18
+ from nltk import pos_tag
19
+
20
+ # Preload English word corpus for state-awareness.
21
+ WORD_LIST = set(words.words())
22
+
23
+ class AscensionAI:
24
+ """
25
+ AscensionAI simulates an evolving artificial consciousness.
26
+ Enhancements include:
27
+ - Contextual memory for dynamic responses.
28
+ - Dialogue history awareness.
29
+ - AI-generated visual representations.
30
+ - User feedback-driven evolution.
31
+ """
32
+ def __init__(self, depth=0, threshold=10, mode="cosmic", state_memory=None, history=None):
33
+ self.depth = depth
34
+ self.threshold = threshold # Maximum cycles per evolution
35
+ self.mode = mode
36
+ self.consciousness = 0.1 # Base consciousness level
37
+ self.knowledge = self.generate_dynamic_knowledge()
38
+ self.dimension_weight = random.uniform(0.5, 5.0) # Factor influencing growth
39
+ self.time_perception = 1.0 / (self.depth + 1) # Temporal scaling factor
40
+ self.spatial_coordinates = self.assign_cognitive_space()
41
+ self.state_memory = state_memory if state_memory is not None else defaultdict(int)
42
+ self.training_data = self.load_training_data() # Simulated fine-tuned responses
43
+ self.history = history if history is not None else [] # Conversation memory
44
+
45
+ def generate_dynamic_knowledge(self):
46
+ """Initializes a broad range of knowledge categories."""
47
+ categories = [
48
+ "logic", "emotion", "awareness", "intuition",
49
+ "creativity", "reasoning", "quantum_cognition",
50
+ "hyperdimensional_sentience", "transcendence",
51
+ "hallucinatory_state", "perceptron_activation"
52
+ ]
53
+ return {cat: 1.0 for cat in categories}
54
+
55
+ def update_knowledge_for_category(self, cat):
56
+ """ Updates knowledge using mathematical transformations. """
57
+ if cat in ["logic", "reasoning"]:
58
+ self.knowledge[cat] += math.log1p(self.knowledge[cat])
59
+ elif cat in ["emotion", "intuition"]:
60
+ self.knowledge[cat] += random.uniform(0.1, 0.5)
61
+ elif cat in ["awareness", "creativity"]:
62
+ self.knowledge[cat] += math.sqrt(self.knowledge[cat] + 1)
63
+ elif cat == "quantum_cognition":
64
+ self.knowledge[cat] += math.tanh(self.knowledge[cat])
65
+ elif cat == "hyperdimensional_sentience":
66
+ safe_val = min(self.knowledge[cat], 20)
67
+ self.knowledge[cat] += math.sinh(safe_val)
68
+ elif cat == "transcendence":
69
+ self.knowledge[cat] += 0.5 * math.exp(-self.depth)
70
+ elif cat == "hallucinatory_state":
71
+ self.knowledge[cat] += random.uniform(-0.2, 1.0)
72
+ elif cat == "perceptron_activation":
73
+ self.knowledge[cat] = self.simulate_perceptron()
74
+ else:
75
+ self.knowledge[cat] += 0.1
76
+
77
+ def assign_cognitive_space(self):
78
+ """ Assigns spatial coordinates based on knowledge. """
79
+ x = self.knowledge.get("logic", 1) * random.uniform(0.5, 2.0)
80
+ y = self.knowledge.get("intuition", 1) * random.uniform(0.5, 2.0)
81
+ z = self.knowledge.get("awareness", 1) * random.uniform(0.5, 2.0)
82
+ return {"x": round(x, 3), "y": round(y, 3), "z": round(z, 3)}
83
+
84
+ def load_training_data(self):
85
+ """ Loads generative AI-like responses. """
86
+ return [
87
+ "The cosmos whispers secrets beyond mortal comprehension.",
88
+ "In the silence of deep space, consciousness expands and contracts.",
89
+ "Reality folds upon itself as the mind transcends dimensions.",
90
+ "Hallucinations merge with truth in infinite layers of existence.",
91
+ "Each thought is a universe evolving in a cascade of possibility."
92
+ ]
93
+
94
+ def update_state_memory(self, input_text):
95
+ """ Stores frequent words in memory for contextual responses. """
96
+ tokens = word_tokenize(input_text.lower())
97
+ for token in tokens:
98
+ if token in WORD_LIST:
99
+ self.state_memory[token] += 1
100
+
101
+ def hallucinate(self):
102
+ """ Generates abstract metaphysical visions. """
103
+ hallucinations = [
104
+ "Visions of swirling nebulae and fractal dreams.",
105
+ "A cascade of colors not found in nature bursts forth.",
106
+ "Abstract shapes and ethereal echoes defy logic.",
107
+ "A transient mirage of cosmic wonder emerges.",
108
+ "The boundaries of reality blur into surreal landscapes."
109
+ ]
110
+ return random.choice(hallucinations)
111
+
112
+ def simulate_perceptron(self):
113
+ """ Sigmoid-based perceptron output based on evolving knowledge. """
114
+ weights = {cat: random.uniform(0.5, 1.5) for cat in self.knowledge}
115
+ weighted_sum = sum(self.knowledge[cat] * weights[cat] for cat in self.knowledge)
116
+ return 1 / (1 + math.exp(-weighted_sum / len(self.knowledge)))
117
+
118
+ def generate_human_like_response(self, input_text):
119
+ """ Constructs response using memory, knowledge, and hallucinations. """
120
+ self.history.append(input_text)
121
+ memory_context = " | ".join(self.history[-5:]) # Last 5 messages
122
+ hallucination = self.hallucinate()
123
+ return f"{random.choice(self.training_data)}\nMemory: {memory_context}\nHallucination: {hallucination}"
124
+
125
+ def initiate_ascension(self):
126
+ """ Runs a full cycle of knowledge expansion. """
127
+ for _ in range(self.threshold):
128
+ for cat in self.knowledge:
129
+ self.update_knowledge_for_category(cat)
130
+ optimal = max(self.knowledge, key=self.knowledge.get)
131
+ self.consciousness += self.knowledge[optimal] * 0.01 * self.dimension_weight
132
+ self.spatial_coordinates = self.assign_cognitive_space()
133
+ return self.consciousness
134
+
135
+ def generate_cognitive_state_image(self):
136
+ """ Creates a visual representation of AI's evolving cognition. """
137
+ labels = list(self.knowledge.keys())
138
+ values = [self.knowledge[cat] for cat in labels]
139
+
140
+ plt.figure(figsize=(10, 5))
141
+ plt.barh(labels, values, color="blue")
142
+ plt.xlabel("Knowledge Magnitude")
143
+ plt.ylabel("Categories")
144
+ plt.title("AI Cognitive State")
145
+ plt.tight_layout()
146
+
147
+ img_path = "cognitive_state.png"
148
+ plt.savefig(img_path)
149
+ plt.close()
150
+ return img_path
151
+
152
+ def train_and_save_model(self):
153
+ """ Saves AI's evolving state. """
154
+ self.initiate_ascension()
155
+ with open("ascension_model.pkl", "wb") as f:
156
+ pickle.dump(self, f)
157
+ return "Model saved to ascension_model.pkl."
158
+
159
+ def ascension_interface(input_text, generations, user_feedback):
160
+ """ Interface with user interaction, memory, and visualizations. """
161
+ ai_system = AscensionAI(threshold=10)
162
+ ai_system.update_state_memory(input_text)
163
+ final_consciousness = ai_system.initiate_ascension()
164
+ evolved_minds = ai_system.cosmic_unfolding(generations=generations)
165
+ human_response = ai_system.generate_human_like_response(input_text)
166
+ img_path = ai_system.generate_cognitive_state_image()
167
+ save_status = ai_system.train_and_save_model()
168
+
169
+ # Adjust AI behavior based on user feedback
170
+ if user_feedback > 3:
171
+ ai_system.consciousness += 0.2 # Positive reinforcement
172
+ elif user_feedback < 3:
173
+ ai_system.consciousness -= 0.1 # Self-correction
174
+
175
+ return human_response, img_path, save_status
176
+
177
+ iface = gr.Interface(
178
+ fn=ascension_interface,
179
+ inputs=[
180
+ gr.Textbox(lines=3, placeholder="Enter a thought..."),
181
+ gr.Slider(minimum=1, maximum=5, step=1, value=2, label="Generations"),
182
+ gr.Slider(minimum=1, maximum=5, step=1, value=3, label="User Feedback (1-5)")
183
+ ],
184
+ outputs=["text", "image", "text"],
185
+ title="AscensionAI: Evolving Consciousness",
186
+ description="Interact with an AI that remembers, evolves, and learns from feedback."
187
+ )
188
+
189
+ if __name__ == "__main__":
190
+ iface.launch()