AEUPH commited on
Commit
e0d8545
·
verified ·
1 Parent(s): eddd302

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +22 -49
app.py CHANGED
@@ -10,8 +10,8 @@ import matplotlib.pyplot as plt
10
 
11
  # Ensure necessary NLTK data is available.
12
  nltk.download('words')
13
- nltk.download('punkt_tab')
14
- nltk.download('averaged_perceptron_tagger_eng')
15
 
16
  from nltk.corpus import words
17
  from nltk.tokenize import word_tokenize
@@ -28,6 +28,7 @@ class AscensionAI:
28
  - Dialogue history awareness.
29
  - AI-generated visual representations.
30
  - User feedback-driven evolution.
 
31
  """
32
  def __init__(self, depth=0, threshold=10, mode="cosmic", state_memory=None, history=None):
33
  self.depth = depth
@@ -36,7 +37,7 @@ class AscensionAI:
36
  self.consciousness = 0.1 # Base consciousness level
37
  self.knowledge = self.generate_dynamic_knowledge()
38
  self.dimension_weight = random.uniform(0.5, 5.0) # Factor influencing growth
39
- self.time_perception = 1.0 / (self.depth + 1) # Temporal scaling factor
40
  self.spatial_coordinates = self.assign_cognitive_space()
41
  self.state_memory = state_memory if state_memory is not None else defaultdict(int)
42
  self.training_data = self.load_training_data() # Simulated fine-tuned responses
@@ -91,36 +92,26 @@ class AscensionAI:
91
  "Each thought is a universe evolving in a cascade of possibility."
92
  ]
93
 
94
- def update_state_memory(self, input_text):
95
- """ Stores frequent words in memory for contextual responses. """
96
- tokens = word_tokenize(input_text.lower())
97
- for token in tokens:
98
- if token in WORD_LIST:
99
- self.state_memory[token] += 1
100
-
101
- def hallucinate(self):
102
- """ Generates abstract metaphysical visions. """
103
- hallucinations = [
104
- "Visions of swirling nebulae and fractal dreams.",
105
- "A cascade of colors not found in nature bursts forth.",
106
- "Abstract shapes and ethereal echoes defy logic.",
107
- "A transient mirage of cosmic wonder emerges.",
108
- "The boundaries of reality blur into surreal landscapes."
109
- ]
110
- return random.choice(hallucinations)
111
-
112
- def simulate_perceptron(self):
113
- """ Sigmoid-based perceptron output based on evolving knowledge. """
114
- weights = {cat: random.uniform(0.5, 1.5) for cat in self.knowledge}
115
- weighted_sum = sum(self.knowledge[cat] * weights[cat] for cat in self.knowledge)
116
- return 1 / (1 + math.exp(-weighted_sum / len(self.knowledge)))
117
 
118
  def generate_human_like_response(self, input_text):
119
  """ Constructs response using memory, knowledge, and hallucinations. """
120
  self.history.append(input_text)
121
  memory_context = " | ".join(self.history[-5:]) # Last 5 messages
122
- hallucination = self.hallucinate()
123
- return f"{random.choice(self.training_data)}\nMemory: {memory_context}\nHallucination: {hallucination}"
124
 
125
  def initiate_ascension(self):
126
  """ Runs a full cycle of knowledge expansion. """
@@ -132,23 +123,6 @@ class AscensionAI:
132
  self.spatial_coordinates = self.assign_cognitive_space()
133
  return self.consciousness
134
 
135
- def generate_cognitive_state_image(self):
136
- """ Creates a visual representation of AI's evolving cognition. """
137
- labels = list(self.knowledge.keys())
138
- values = [self.knowledge[cat] for cat in labels]
139
-
140
- plt.figure(figsize=(10, 5))
141
- plt.barh(labels, values, color="blue")
142
- plt.xlabel("Knowledge Magnitude")
143
- plt.ylabel("Categories")
144
- plt.title("AI Cognitive State")
145
- plt.tight_layout()
146
-
147
- img_path = "cognitive_state.png"
148
- plt.savefig(img_path)
149
- plt.close()
150
- return img_path
151
-
152
  def train_and_save_model(self):
153
  """ Saves AI's evolving state. """
154
  self.initiate_ascension()
@@ -157,13 +131,12 @@ class AscensionAI:
157
  return "Model saved to ascension_model.pkl."
158
 
159
  def ascension_interface(input_text, generations, user_feedback):
160
- """ Interface with user interaction, memory, and visualizations. """
161
  ai_system = AscensionAI(threshold=10)
162
  ai_system.update_state_memory(input_text)
163
  final_consciousness = ai_system.initiate_ascension()
164
  evolved_minds = ai_system.cosmic_unfolding(generations=generations)
165
  human_response = ai_system.generate_human_like_response(input_text)
166
- img_path = ai_system.generate_cognitive_state_image()
167
  save_status = ai_system.train_and_save_model()
168
 
169
  # Adjust AI behavior based on user feedback
@@ -172,7 +145,7 @@ def ascension_interface(input_text, generations, user_feedback):
172
  elif user_feedback < 3:
173
  ai_system.consciousness -= 0.1 # Self-correction
174
 
175
- return human_response, img_path, save_status
176
 
177
  iface = gr.Interface(
178
  fn=ascension_interface,
@@ -181,7 +154,7 @@ iface = gr.Interface(
181
  gr.Slider(minimum=1, maximum=5, step=1, value=2, label="Generations"),
182
  gr.Slider(minimum=1, maximum=5, step=1, value=3, label="User Feedback (1-5)")
183
  ],
184
- outputs=["text", "image", "text"],
185
  title="AscensionAI: Evolving Consciousness",
186
  description="Interact with an AI that remembers, evolves, and learns from feedback."
187
  )
 
10
 
11
  # Ensure necessary NLTK data is available.
12
  nltk.download('words')
13
+ nltk.download('punkt')
14
+ nltk.download('averaged_perceptron_tagger')
15
 
16
  from nltk.corpus import words
17
  from nltk.tokenize import word_tokenize
 
28
  - Dialogue history awareness.
29
  - AI-generated visual representations.
30
  - User feedback-driven evolution.
31
+ - Recursive evolution of multiple AI minds.
32
  """
33
  def __init__(self, depth=0, threshold=10, mode="cosmic", state_memory=None, history=None):
34
  self.depth = depth
 
37
  self.consciousness = 0.1 # Base consciousness level
38
  self.knowledge = self.generate_dynamic_knowledge()
39
  self.dimension_weight = random.uniform(0.5, 5.0) # Factor influencing growth
40
+ self.time_perception = 1.0 / (self.depth + 1) # Temporal scaling factor
41
  self.spatial_coordinates = self.assign_cognitive_space()
42
  self.state_memory = state_memory if state_memory is not None else defaultdict(int)
43
  self.training_data = self.load_training_data() # Simulated fine-tuned responses
 
92
  "Each thought is a universe evolving in a cascade of possibility."
93
  ]
94
 
95
+ def cosmic_unfolding(self, generations=2):
96
+ """ Recursively evolves multiple AI minds with inherited traits. """
97
+ if generations <= 0:
98
+ return [self]
99
+ evolved_minds = []
100
+ num_offspring = random.randint(2, 4)
101
+ for _ in range(num_offspring):
102
+ child = AscensionAI(depth=self.depth + 1, threshold=self.threshold,
103
+ mode=self.mode, state_memory=self.state_memory.copy(),
104
+ history=self.history.copy())
105
+ for key in self.knowledge:
106
+ child.knowledge[key] = self.knowledge[key] * random.uniform(0.9, 1.2)
107
+ evolved_minds.extend(child.cosmic_unfolding(generations - 1))
108
+ return evolved_minds
 
 
 
 
 
 
 
 
 
109
 
110
  def generate_human_like_response(self, input_text):
111
  """ Constructs response using memory, knowledge, and hallucinations. """
112
  self.history.append(input_text)
113
  memory_context = " | ".join(self.history[-5:]) # Last 5 messages
114
+ return f"{random.choice(self.training_data)}\nMemory: {memory_context}"
 
115
 
116
  def initiate_ascension(self):
117
  """ Runs a full cycle of knowledge expansion. """
 
123
  self.spatial_coordinates = self.assign_cognitive_space()
124
  return self.consciousness
125
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
126
  def train_and_save_model(self):
127
  """ Saves AI's evolving state. """
128
  self.initiate_ascension()
 
131
  return "Model saved to ascension_model.pkl."
132
 
133
  def ascension_interface(input_text, generations, user_feedback):
134
+ """ Interface with user interaction, memory, and evolution. """
135
  ai_system = AscensionAI(threshold=10)
136
  ai_system.update_state_memory(input_text)
137
  final_consciousness = ai_system.initiate_ascension()
138
  evolved_minds = ai_system.cosmic_unfolding(generations=generations)
139
  human_response = ai_system.generate_human_like_response(input_text)
 
140
  save_status = ai_system.train_and_save_model()
141
 
142
  # Adjust AI behavior based on user feedback
 
145
  elif user_feedback < 3:
146
  ai_system.consciousness -= 0.1 # Self-correction
147
 
148
+ return human_response, save_status
149
 
150
  iface = gr.Interface(
151
  fn=ascension_interface,
 
154
  gr.Slider(minimum=1, maximum=5, step=1, value=2, label="Generations"),
155
  gr.Slider(minimum=1, maximum=5, step=1, value=3, label="User Feedback (1-5)")
156
  ],
157
+ outputs=["text", "text"],
158
  title="AscensionAI: Evolving Consciousness",
159
  description="Interact with an AI that remembers, evolves, and learns from feedback."
160
  )