File size: 10,775 Bytes
af901b1
 
 
 
 
 
 
a8d0029
af901b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a8d0029
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
af901b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a8d0029
 
af901b1
 
 
 
 
 
 
 
 
 
 
a8d0029
 
 
af901b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a8d0029
af901b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a8d0029
 
af901b1
 
a8d0029
 
 
 
 
 
 
 
 
 
af901b1
a8d0029
 
af901b1
a8d0029
 
 
 
 
 
 
 
 
 
 
 
 
af901b1
a8d0029
 
 
 
af901b1
 
 
a8d0029
af901b1
 
 
 
 
a8d0029
af901b1
a8d0029
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
af901b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
import os
import numpy as np
import coremltools as ct
import time
from transformers import AutoTokenizer
import shutil
from argparse import ArgumentParser
import asyncio


def copy_compiled_model(mlmodel: ct.models.MLModel, dest: str):
    compiled_model_path = mlmodel.get_compiled_model_path()
    shutil.copytree(compiled_model_path, dest, dirs_exist_ok=True)


def load_mlmodel(path, function_name, copy_compiled):
    extension = os.path.splitext(path)[1]
    if extension == ".mlmodelc":
        return ct.models.CompiledMLModel(
            path,
            function_name=function_name,
            compute_units=ct.ComputeUnit.CPU_AND_NE,
        )
    else:
        mlmodel = ct.models.MLModel(
            path,
            function_name=function_name,
            compute_units=ct.ComputeUnit.CPU_AND_NE,
        )
        if copy_compiled:
            copy_compiled_model(mlmodel, path.replace(".mlpackage", ".mlmodelc"))
        return mlmodel


def load_embeddings(path):
    return np.load(path)


async def generate_single_step(
    input_id,
    embed_fn,
    model,
    state,
    position,
    attention_mask_ref,
    lm_head,
):
    embd = embed_fn(input_id).transpose(0, 3, 1, 2)
    hidden_states = model.predict(
        {
            "hidden_states": embd,
            "kv_write_idx": np.array([position], dtype=np.int32),
            "positions": np.array([[position]], dtype=np.int32),
            "attention_mask": attention_mask_ref[:, :, [position]],
        },
        state,
    )["output_hidden_states"]
    if lm_head is not None:
        input_id = lm_head(hidden_states)
        return input_id


class ModelContainer:
    def __init__(
        self,
        embeddings_path,
        mlmodel_path,
        lm_head_path,
        cache_length,
        hf_model,
        temp=0.7,
        min_p=0.1,
    ):
        self.mlmodel_path = mlmodel_path
        self.embeddings_path = embeddings_path
        self.lm_head_path = lm_head_path
        self.cache_length = cache_length
        self.temp = temp
        self.min_p = min_p
        print("Loading embeddings...")
        self.embeddings = load_embeddings(embeddings_path)
        print("Loading generation model...")
        self.generation_model = load_mlmodel(
            mlmodel_path, f"model_input_1_cache_{cache_length}", copy_compiled=True
        )
        # self.prompt_model = None
        print("Loading prompt model...")
        self.prompt_model = load_mlmodel(
            mlmodel_path.replace(".mlpackage", ".mlmodelc"),
            f"model_input_64_cache_{cache_length}",
            copy_compiled=False,
        )
        print("Loading lm head model...")
        self.lm_head_model = load_mlmodel(
            lm_head_path,
            "min_p_length_1" if temp > 0 else "lm_head_length_1",
            copy_compiled=True,
        )
        self.tokenizer = AutoTokenizer.from_pretrained(hf_model)
        self.end_of_response_token_id = self.tokenizer("<|im_end|>").input_ids[0]
        self.end_of_text_token_id = self.tokenizer("<|end_of_text|>").input_ids[0]
        self.break_tokens = [self.end_of_response_token_id, self.end_of_text_token_id]

        self.state = None
        self.position = None
        attention_mask = np.arange(self.cache_length, dtype=np.int32)
        attention_mask = attention_mask[:, None] >= attention_mask[None, :]
        attention_mask = attention_mask[None, None, :, :]
        self.attention_mask = np.where(
            attention_mask,
            np.array(0.0, dtype=np.float16),
            np.array(-np.inf, dtype=np.float16),
        )

    def initialize_generation(self):
        self.state = self.generation_model.make_state()
        self.position = 0

    def load_prompt_model(self):
        if self.prompt_model is None:
            self.prompt_model = load_mlmodel(
                self.mlmodel_path,
                f"model_input_64_cache_{self.cache_length}",
                copy_compiled=False,
            )

    def unload_prompt_model(self):
        del self.prompt_model
        self.prompt_model = None

    def embed(self, ids):
        return self.embeddings[ids]  # .transpose(0, 2, 1)  # [..., None, :]

    def process_prompt(self, prompt):
        if self.prompt_model is None:
            self.load_prompt_model()
        messages = [{"role": "user", "content": prompt}]
        tokens = self.tokenizer.apply_chat_template(
            messages, tokenize=True, add_generation_prompt=True
        )
        if self.position + len(tokens) >= self.cache_length:
            return np.array([-1])
        stop_processing = False
        start_time = time.perf_counter()
        processed_chunks = 0
        for i in range(0, len(tokens), 64):
            chunk = tokens[i : min(i + 64, len(tokens))]
            if self.position + len(chunk) > self.cache_length:
                stop_processing = True
                break
            processed_chunks += 1
            embds = self.embed([chunk]).transpose(0, 2, 1)[
                ..., None, :
            ]  # [..., None, :]
            if len(chunk) < 64:
                embds = np.concat(
                    (
                        embds,
                        np.zeros(
                            (1, embds.shape[1], 1, 64 - len(chunk)), dtype=np.float16
                        ),
                    ),
                    axis=-1,
                )
            kv_write_idx = np.array([self.position], dtype=np.int32)
            positions = np.arange(self.position, self.position + 64, dtype=np.int32)[
                None, :
            ]
            attention_mask = self.attention_mask[
                :, :, self.position : self.position + 64
            ]
            pred = self.prompt_model.predict(
                {
                    "hidden_states": embds,
                    "kv_write_idx": kv_write_idx,
                    "positions": positions,
                    "attention_mask": attention_mask,
                },
                self.state,
            )
            self.position += len(chunk)
        self.unload_prompt_model()
        end_time = time.perf_counter()
        print(
            f"==== Processed {len(tokens)} tokens + {64 - len(chunk)} pad tokens in {end_time - start_time:.2f} seconds, {processed_chunks * 64 / (end_time - start_time):.2f} tokens per second, current position: {self.position}/{self.cache_length}",
        )
        if stop_processing:
            return np.array([-1], dtype=np.int32)
        output_hidden_states = pred["output_hidden_states"][..., [len(chunk) - 1]]
        return self.lm_head(output_hidden_states)

    def lm_head(self, hidden_states):
        if self.temp > 0:
            input_id = self.lm_head_model.predict(
                {
                    "hidden_states": hidden_states,
                    "temp": np.array([self.temp], dtype=np.float16),
                    "p": np.array([self.min_p], dtype=np.float16),
                    "random_number": np.random.uniform(0.0, 1.0, (1,)),
                }
            )["sampled_index"][:, 0]
        else:
            input_id = self.lm_head_model.predict(
                {
                    "hidden_states": hidden_states,
                }
            )[
                "argmax"
            ][:, 0]
        return input_id

    async def generate(self, input_id: np.array):
        continue_generating = True
        # for i in range(max_new_tokens):
        generated_tokens = 0
        start_time = time.perf_counter()
        # task = asyncio.create_task(generate_single_step(
        #     input_id,
        #     self.embed,
        #     self.generation_model,
        #     self.state,
        #     self.position,
        #     self.attention_mask,
        #     self.lm_head,
        # ))

        while (self.position < self.cache_length) and continue_generating:
            generated_tokens += 1
            input_id_item = input_id.item()
            if input_id_item in self.break_tokens:
                continue_generating = False
            task = asyncio.create_task(
                generate_single_step(
                    input_id,
                    self.embed,
                    self.generation_model,
                    self.state,
                    self.position,
                    self.attention_mask,
                    self.lm_head if continue_generating else None,
                )
            )
            self.position += 1
            print(self.tokenizer.decode(input_id_item), end="", flush=True)
            input_id = await task

        print()

        end_time = time.perf_counter()
        print(
            f"==== Generated {generated_tokens} tokens in {end_time - start_time:.2f} seconds, {generated_tokens / (end_time - start_time):.2f} tokens per second, current position: {self.position}/{self.cache_length}",
        )
        # if stop_generation:
        #     self.load_prompt_model()

    def loop(self):
        print("--- Begin conversation ---")
        while True:
            self.initialize_generation()
            while True:
                print(">>> ", end="", flush=True)
                self.load_prompt_model()
                prompt = input()
                prompt_result = self.process_prompt(prompt)
                if prompt_result.item() == -1:
                    print("\n--- END OF CONVERSATION: MAX CONTEXT LENGTH REACHED ---\n")
                    print("--- Beginning new conversation ---")
                    break
                # print(self.tokenizer.decode(prompt_result.item()), end="", flush=True)
                asyncio.run(self.generate(prompt_result))
                if self.position >= (self.cache_length):
                    print("\n--- END OF CONVERSATION: MAX CONTEXT LENGTH REACHED ---\n")
                    print("--- Beginning new conversation ---")
                    break


def parse_args():
    parser = ArgumentParser()
    parser.add_argument("--model", type=str, required=True)
    parser.add_argument("--lm_head", type=str, required=True)
    parser.add_argument("--embeddings", type=str, required=True)
    parser.add_argument(
        "--cache_length",
        type=int,
        choices=[512, 1024, 2048, 2048 + 1024, 4096, 4096 + 2048, 8192],
        default=1024,
    )
    parser.add_argument("--min_p", type=float, default=0.1)
    parser.add_argument("--temp", type=float, default=0.7)
    # parser.add_argument("--hf_model", type=str, default="")

    return parser.parse_args()


def main():
    args = parse_args()
    ModelContainer(
        args.embeddings,
        args.model,
        args.lm_head,
        args.cache_length,
        "tiiuae/Falcon-E-1B-Instruct",
        args.temp,
        args.min_p,
    ).loop()


if __name__ == "__main__":
    main()