Upload 10 files
Browse files- .gitattributes +1 -0
- falcon_edge_3b.mlmodelc/analytics/coremldata.bin +3 -0
- falcon_edge_3b.mlmodelc/coremldata.bin +3 -0
- falcon_edge_3b.mlmodelc/model.mil +3 -0
- falcon_edge_3b.mlmodelc/weights/weight.bin +3 -0
- falcon_edge_3b_embeddings.npy +3 -0
- falcon_edge_3b_lm_head.mlmodelc/analytics/coremldata.bin +3 -0
- falcon_edge_3b_lm_head.mlmodelc/coremldata.bin +3 -0
- falcon_edge_3b_lm_head.mlmodelc/model.mil +0 -0
- falcon_edge_3b_lm_head.mlmodelc/weights/weight.bin +3 -0
- falcon_edge_generate.py +274 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
falcon_edge_3b.mlmodelc/model.mil filter=lfs diff=lfs merge=lfs -text
|
falcon_edge_3b.mlmodelc/analytics/coremldata.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:866173ded7c164e5c27c24d1804e353a945809d54a8f49708cf1480af7eee213
|
3 |
+
size 243
|
falcon_edge_3b.mlmodelc/coremldata.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e75d3ee63e4891a5b0592bf69e6e5e3b99d9cdd8304bc43fa60fb7a0fe3f393e
|
3 |
+
size 13436
|
falcon_edge_3b.mlmodelc/model.mil
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0e42adcc750756a1c42e45e9ec9bb81d28532457a83b80e73870f880383b563b
|
3 |
+
size 62905007
|
falcon_edge_3b.mlmodelc/weights/weight.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:be0ebd66f33be503d96045915631bd460069037cb40d8fa5ac284792de9e457f
|
3 |
+
size 734283968
|
falcon_edge_3b_embeddings.npy
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3b8ba6463baafcc8eea94a2c442168997a07c452a43a28b26953e57936009256
|
3 |
+
size 134217856
|
falcon_edge_3b_lm_head.mlmodelc/analytics/coremldata.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2c803f63522fd351bcb1eef33ccba50ae8d4ea88bb8fc2811ca1f3fb3be51e9f
|
3 |
+
size 243
|
falcon_edge_3b_lm_head.mlmodelc/coremldata.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f369abfe93a738838f46aec9d7d18e319be6ae627b804857a4e1401eb4b06f2d
|
3 |
+
size 3098
|
falcon_edge_3b_lm_head.mlmodelc/model.mil
ADDED
The diff for this file is too large to render.
See raw diff
|
|
falcon_edge_3b_lm_head.mlmodelc/weights/weight.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2212bb66c4734951f503b1b5f532a2ad1d618cc10d3c10139c9fc0af731d3743
|
3 |
+
size 134222976
|
falcon_edge_generate.py
ADDED
@@ -0,0 +1,274 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import numpy as np
|
3 |
+
import coremltools as ct
|
4 |
+
import time
|
5 |
+
from transformers import AutoTokenizer
|
6 |
+
import shutil
|
7 |
+
from argparse import ArgumentParser
|
8 |
+
|
9 |
+
|
10 |
+
def copy_compiled_model(mlmodel: ct.models.MLModel, dest: str):
|
11 |
+
compiled_model_path = mlmodel.get_compiled_model_path()
|
12 |
+
shutil.copytree(compiled_model_path, dest, dirs_exist_ok=True)
|
13 |
+
|
14 |
+
|
15 |
+
def load_mlmodel(path, function_name, copy_compiled):
|
16 |
+
extension = os.path.splitext(path)[1]
|
17 |
+
if extension == ".mlmodelc":
|
18 |
+
return ct.models.CompiledMLModel(
|
19 |
+
path,
|
20 |
+
function_name=function_name,
|
21 |
+
compute_units=ct.ComputeUnit.CPU_AND_NE,
|
22 |
+
)
|
23 |
+
else:
|
24 |
+
mlmodel = ct.models.MLModel(
|
25 |
+
path,
|
26 |
+
function_name=function_name,
|
27 |
+
compute_units=ct.ComputeUnit.CPU_AND_NE,
|
28 |
+
)
|
29 |
+
if copy_compiled:
|
30 |
+
copy_compiled_model(mlmodel, path.replace(".mlpackage", ".mlmodelc"))
|
31 |
+
return mlmodel
|
32 |
+
|
33 |
+
|
34 |
+
def load_embeddings(path):
|
35 |
+
return np.load(path)
|
36 |
+
|
37 |
+
|
38 |
+
class ModelContainer:
|
39 |
+
def __init__(
|
40 |
+
self,
|
41 |
+
embeddings_path,
|
42 |
+
mlmodel_path,
|
43 |
+
lm_head_path,
|
44 |
+
cache_length,
|
45 |
+
hf_model,
|
46 |
+
temp=0.7,
|
47 |
+
min_p=0.1,
|
48 |
+
):
|
49 |
+
self.mlmodel_path = mlmodel_path
|
50 |
+
self.embeddings_path = embeddings_path
|
51 |
+
self.lm_head_path = lm_head_path
|
52 |
+
self.cache_length = cache_length
|
53 |
+
self.temp = temp
|
54 |
+
self.min_p = min_p
|
55 |
+
print("Loading embeddings...")
|
56 |
+
self.embeddings = load_embeddings(embeddings_path)
|
57 |
+
print("Loading generation model...")
|
58 |
+
self.generation_model = load_mlmodel(
|
59 |
+
mlmodel_path, f"model_input_1_cache_{cache_length}", copy_compiled=True
|
60 |
+
)
|
61 |
+
# self.prompt_model = None
|
62 |
+
print("Loading prompt model...")
|
63 |
+
self.prompt_model = load_mlmodel(
|
64 |
+
mlmodel_path.replace(".mlpackage", ".mlmodelc"),
|
65 |
+
f"model_input_64_cache_{cache_length}",
|
66 |
+
copy_compiled=False,
|
67 |
+
)
|
68 |
+
print("Loading lm head model...")
|
69 |
+
self.lm_head_model = load_mlmodel(
|
70 |
+
lm_head_path,
|
71 |
+
"min_p_length_1" if temp > 0 else "lm_head_length_1",
|
72 |
+
copy_compiled=True,
|
73 |
+
)
|
74 |
+
self.tokenizer = AutoTokenizer.from_pretrained(hf_model)
|
75 |
+
self.end_of_response_token_id = self.tokenizer("<|im_end|>").input_ids[0]
|
76 |
+
|
77 |
+
self.state = None
|
78 |
+
self.position = None
|
79 |
+
self.attention_mask = None
|
80 |
+
|
81 |
+
def initialize_generation(self):
|
82 |
+
self.state = self.generation_model.make_state()
|
83 |
+
attention_mask = np.arange(self.cache_length, dtype=np.int32)
|
84 |
+
attention_mask = attention_mask[:, None] >= attention_mask[None, :]
|
85 |
+
attention_mask = attention_mask[None, None, :, :]
|
86 |
+
self.attention_mask = np.where(
|
87 |
+
attention_mask,
|
88 |
+
np.array(0.0, dtype=np.float16),
|
89 |
+
np.array(-np.inf, dtype=np.float16),
|
90 |
+
)
|
91 |
+
self.position = 0
|
92 |
+
|
93 |
+
def load_prompt_model(self):
|
94 |
+
if self.prompt_model is None:
|
95 |
+
self.prompt_model = load_mlmodel(
|
96 |
+
self.mlmodel_path,
|
97 |
+
f"model_input_64_cache_{self.cache_length}",
|
98 |
+
copy_compiled=False,
|
99 |
+
)
|
100 |
+
|
101 |
+
def unload_prompt_model(self):
|
102 |
+
del self.prompt_model
|
103 |
+
self.prompt_model = None
|
104 |
+
|
105 |
+
def embed(self, ids):
|
106 |
+
return self.embeddings[ids] # .transpose(0, 2, 1) # [..., None, :]
|
107 |
+
|
108 |
+
def process_prompt(self, prompt):
|
109 |
+
if self.prompt_model is None:
|
110 |
+
self.load_prompt_model()
|
111 |
+
messages = [{"role": "user", "content": prompt}]
|
112 |
+
tokens = self.tokenizer.apply_chat_template(
|
113 |
+
messages, tokenize=True, add_generation_prompt=True
|
114 |
+
)
|
115 |
+
if self.position + len(tokens) >= self.cache_length:
|
116 |
+
return np.array([-1])
|
117 |
+
stop_processing = False
|
118 |
+
start_time = time.perf_counter()
|
119 |
+
processed_chunks = 0
|
120 |
+
for i in range(0, len(tokens), 64):
|
121 |
+
chunk = tokens[i : min(i + 64, len(tokens))]
|
122 |
+
if self.position + len(chunk) > self.cache_length:
|
123 |
+
stop_processing = True
|
124 |
+
break
|
125 |
+
processed_chunks += 1
|
126 |
+
embds = self.embed([chunk]).transpose(0, 2, 1)[
|
127 |
+
..., None, :
|
128 |
+
] # [..., None, :]
|
129 |
+
if len(chunk) < 64:
|
130 |
+
embds = np.concat(
|
131 |
+
(
|
132 |
+
embds,
|
133 |
+
np.zeros(
|
134 |
+
(1, embds.shape[1], 1, 64 - len(chunk)), dtype=np.float16
|
135 |
+
),
|
136 |
+
),
|
137 |
+
axis=-1,
|
138 |
+
)
|
139 |
+
kv_write_idx = np.array([self.position], dtype=np.int32)
|
140 |
+
positions = np.arange(self.position, self.position + 64, dtype=np.int32)[
|
141 |
+
None, :
|
142 |
+
]
|
143 |
+
attention_mask = self.attention_mask[
|
144 |
+
:, :, self.position : self.position + 64
|
145 |
+
]
|
146 |
+
pred = self.prompt_model.predict(
|
147 |
+
{
|
148 |
+
"hidden_states": embds,
|
149 |
+
"kv_write_idx": kv_write_idx,
|
150 |
+
"positions": positions,
|
151 |
+
"attention_mask": attention_mask,
|
152 |
+
},
|
153 |
+
self.state,
|
154 |
+
)
|
155 |
+
self.position += len(chunk)
|
156 |
+
self.unload_prompt_model()
|
157 |
+
end_time = time.perf_counter()
|
158 |
+
print(
|
159 |
+
f"==== Processed {processed_chunks * 64} tokens in {end_time - start_time:.2f} seconds, {processed_chunks * 64 / (end_time - start_time):.2f} tokens per second, current position: {self.position}",
|
160 |
+
)
|
161 |
+
if stop_processing:
|
162 |
+
return np.array([-1], dtype=np.int32)
|
163 |
+
output_hidden_states = pred["output_hidden_states"][..., [len(chunk) - 1]]
|
164 |
+
return self.lm_head(output_hidden_states)
|
165 |
+
|
166 |
+
def lm_head(self, hidden_states):
|
167 |
+
if self.temp > 0:
|
168 |
+
input_id = self.lm_head_model.predict(
|
169 |
+
{
|
170 |
+
"hidden_states": hidden_states,
|
171 |
+
"temp": np.array([self.temp], dtype=np.float16),
|
172 |
+
"p": np.array([self.min_p], dtype=np.float16),
|
173 |
+
"random_number": np.random.uniform(0.0, 1.0, (1,)),
|
174 |
+
}
|
175 |
+
)["sampled_index"][:, 0]
|
176 |
+
else:
|
177 |
+
input_id = self.lm_head_model.predict(
|
178 |
+
{
|
179 |
+
"hidden_states": hidden_states,
|
180 |
+
}
|
181 |
+
)[
|
182 |
+
"argmax"
|
183 |
+
][:, 0]
|
184 |
+
return input_id
|
185 |
+
|
186 |
+
def generate(self, input_id: np.array):
|
187 |
+
stop_generation = False
|
188 |
+
# for i in range(max_new_tokens):
|
189 |
+
start_time = time.perf_counter()
|
190 |
+
generated_tokens = 0
|
191 |
+
while self.position < self.cache_length:
|
192 |
+
generated_tokens += 1
|
193 |
+
embd = self.embed(input_id).transpose(0, 3, 1, 2)
|
194 |
+
hidden_states = self.generation_model.predict(
|
195 |
+
{
|
196 |
+
"hidden_states": embd,
|
197 |
+
"kv_write_idx": np.array([self.position], dtype=np.int32),
|
198 |
+
"positions": np.array([[self.position]], dtype=np.int32),
|
199 |
+
"attention_mask": self.attention_mask[:, :, [self.position]],
|
200 |
+
},
|
201 |
+
self.state,
|
202 |
+
)["output_hidden_states"]
|
203 |
+
if stop_generation:
|
204 |
+
print()
|
205 |
+
# print("Loading prompt model...")
|
206 |
+
self.position += 1
|
207 |
+
break
|
208 |
+
|
209 |
+
input_id = self.lm_head(hidden_states)
|
210 |
+
|
211 |
+
input_id_item = input_id.item()
|
212 |
+
if input_id_item == self.end_of_response_token_id:
|
213 |
+
stop_generation = True
|
214 |
+
print(self.tokenizer.decode(input_id_item), end="", flush=True)
|
215 |
+
self.position += 1
|
216 |
+
|
217 |
+
end_time = time.perf_counter()
|
218 |
+
print(
|
219 |
+
f"==== Generated {generated_tokens} tokens in {end_time - start_time:.2f} seconds, {generated_tokens / (end_time - start_time):.2f} tokens per second, current position: {self.position}",
|
220 |
+
)
|
221 |
+
# if stop_generation:
|
222 |
+
# self.load_prompt_model()
|
223 |
+
|
224 |
+
def loop(self):
|
225 |
+
self.initialize_generation()
|
226 |
+
print("Begin conversation...")
|
227 |
+
while True:
|
228 |
+
print(">>> ", end="", flush=True)
|
229 |
+
self.load_prompt_model()
|
230 |
+
prompt = input()
|
231 |
+
prompt_result = self.process_prompt(prompt)
|
232 |
+
if prompt_result.item() == -1:
|
233 |
+
print("\n--- END OF CONVERSATION: MAX CONTEXT LENGTH REACHED ---\n")
|
234 |
+
break
|
235 |
+
print(self.tokenizer.decode(prompt_result.item()), end="", flush=True)
|
236 |
+
self.generate(prompt_result)
|
237 |
+
if self.position >= (self.cache_length):
|
238 |
+
print("\n--- END OF CONVERSATION: MAX CONTEXT LENGTH REACHED ---\n")
|
239 |
+
break
|
240 |
+
|
241 |
+
|
242 |
+
def parse_args():
|
243 |
+
parser = ArgumentParser()
|
244 |
+
parser.add_argument("--model", type=str, required=True)
|
245 |
+
parser.add_argument("--lm_head", type=str, required=True)
|
246 |
+
parser.add_argument("--embeddings", type=str, required=True)
|
247 |
+
parser.add_argument(
|
248 |
+
"--cache_length",
|
249 |
+
type=int,
|
250 |
+
choices=[512, 1024, 2048, 2048 + 1024, 4096, 4096 + 2048, 8192],
|
251 |
+
default=1024,
|
252 |
+
)
|
253 |
+
parser.add_argument("--min_p", type=float, default=0.1)
|
254 |
+
parser.add_argument("--temp", type=float, default=0.7)
|
255 |
+
# parser.add_argument("--hf_model", type=str, default="")
|
256 |
+
|
257 |
+
return parser.parse_args()
|
258 |
+
|
259 |
+
|
260 |
+
def main():
|
261 |
+
args = parse_args()
|
262 |
+
ModelContainer(
|
263 |
+
args.embeddings,
|
264 |
+
args.model,
|
265 |
+
args.lm_head,
|
266 |
+
args.cache_length,
|
267 |
+
"tiiuae/Falcon-E-1B-Instruct",
|
268 |
+
args.temp,
|
269 |
+
args.min_p,
|
270 |
+
).loop()
|
271 |
+
|
272 |
+
|
273 |
+
if __name__ == "__main__":
|
274 |
+
main()
|