updated generation script
Browse files- falcon_edge_generate.py +80 -45
falcon_edge_generate.py
CHANGED
|
@@ -5,6 +5,7 @@ import time
|
|
| 5 |
from transformers import AutoTokenizer
|
| 6 |
import shutil
|
| 7 |
from argparse import ArgumentParser
|
|
|
|
| 8 |
|
| 9 |
|
| 10 |
def copy_compiled_model(mlmodel: ct.models.MLModel, dest: str):
|
|
@@ -35,6 +36,30 @@ def load_embeddings(path):
|
|
| 35 |
return np.load(path)
|
| 36 |
|
| 37 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
class ModelContainer:
|
| 39 |
def __init__(
|
| 40 |
self,
|
|
@@ -73,13 +98,11 @@ class ModelContainer:
|
|
| 73 |
)
|
| 74 |
self.tokenizer = AutoTokenizer.from_pretrained(hf_model)
|
| 75 |
self.end_of_response_token_id = self.tokenizer("<|im_end|>").input_ids[0]
|
|
|
|
|
|
|
| 76 |
|
| 77 |
self.state = None
|
| 78 |
self.position = None
|
| 79 |
-
self.attention_mask = None
|
| 80 |
-
|
| 81 |
-
def initialize_generation(self):
|
| 82 |
-
self.state = self.generation_model.make_state()
|
| 83 |
attention_mask = np.arange(self.cache_length, dtype=np.int32)
|
| 84 |
attention_mask = attention_mask[:, None] >= attention_mask[None, :]
|
| 85 |
attention_mask = attention_mask[None, None, :, :]
|
|
@@ -88,6 +111,9 @@ class ModelContainer:
|
|
| 88 |
np.array(0.0, dtype=np.float16),
|
| 89 |
np.array(-np.inf, dtype=np.float16),
|
| 90 |
)
|
|
|
|
|
|
|
|
|
|
| 91 |
self.position = 0
|
| 92 |
|
| 93 |
def load_prompt_model(self):
|
|
@@ -156,7 +182,7 @@ class ModelContainer:
|
|
| 156 |
self.unload_prompt_model()
|
| 157 |
end_time = time.perf_counter()
|
| 158 |
print(
|
| 159 |
-
f"==== Processed {
|
| 160 |
)
|
| 161 |
if stop_processing:
|
| 162 |
return np.array([-1], dtype=np.int32)
|
|
@@ -183,60 +209,69 @@ class ModelContainer:
|
|
| 183 |
][:, 0]
|
| 184 |
return input_id
|
| 185 |
|
| 186 |
-
def generate(self, input_id: np.array):
|
| 187 |
-
|
| 188 |
# for i in range(max_new_tokens):
|
| 189 |
-
start_time = time.perf_counter()
|
| 190 |
generated_tokens = 0
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
self.state,
|
| 202 |
-
)["output_hidden_states"]
|
| 203 |
-
if stop_generation:
|
| 204 |
-
print()
|
| 205 |
-
# print("Loading prompt model...")
|
| 206 |
-
self.position += 1
|
| 207 |
-
break
|
| 208 |
-
|
| 209 |
-
input_id = self.lm_head(hidden_states)
|
| 210 |
|
|
|
|
|
|
|
| 211 |
input_id_item = input_id.item()
|
| 212 |
-
if input_id_item
|
| 213 |
-
|
| 214 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 215 |
self.position += 1
|
|
|
|
|
|
|
|
|
|
|
|
|
| 216 |
|
| 217 |
end_time = time.perf_counter()
|
| 218 |
print(
|
| 219 |
-
f"==== Generated {generated_tokens} tokens in {end_time - start_time:.2f} seconds, {generated_tokens / (end_time - start_time):.2f} tokens per second, current position: {self.position}",
|
| 220 |
)
|
| 221 |
# if stop_generation:
|
| 222 |
# self.load_prompt_model()
|
| 223 |
|
| 224 |
def loop(self):
|
| 225 |
-
|
| 226 |
-
print("Begin conversation...")
|
| 227 |
while True:
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
|
| 235 |
-
|
| 236 |
-
|
| 237 |
-
|
| 238 |
-
print("
|
| 239 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 240 |
|
| 241 |
|
| 242 |
def parse_args():
|
|
|
|
| 5 |
from transformers import AutoTokenizer
|
| 6 |
import shutil
|
| 7 |
from argparse import ArgumentParser
|
| 8 |
+
import asyncio
|
| 9 |
|
| 10 |
|
| 11 |
def copy_compiled_model(mlmodel: ct.models.MLModel, dest: str):
|
|
|
|
| 36 |
return np.load(path)
|
| 37 |
|
| 38 |
|
| 39 |
+
async def generate_single_step(
|
| 40 |
+
input_id,
|
| 41 |
+
embed_fn,
|
| 42 |
+
model,
|
| 43 |
+
state,
|
| 44 |
+
position,
|
| 45 |
+
attention_mask_ref,
|
| 46 |
+
lm_head,
|
| 47 |
+
):
|
| 48 |
+
embd = embed_fn(input_id).transpose(0, 3, 1, 2)
|
| 49 |
+
hidden_states = model.predict(
|
| 50 |
+
{
|
| 51 |
+
"hidden_states": embd,
|
| 52 |
+
"kv_write_idx": np.array([position], dtype=np.int32),
|
| 53 |
+
"positions": np.array([[position]], dtype=np.int32),
|
| 54 |
+
"attention_mask": attention_mask_ref[:, :, [position]],
|
| 55 |
+
},
|
| 56 |
+
state,
|
| 57 |
+
)["output_hidden_states"]
|
| 58 |
+
if lm_head is not None:
|
| 59 |
+
input_id = lm_head(hidden_states)
|
| 60 |
+
return input_id
|
| 61 |
+
|
| 62 |
+
|
| 63 |
class ModelContainer:
|
| 64 |
def __init__(
|
| 65 |
self,
|
|
|
|
| 98 |
)
|
| 99 |
self.tokenizer = AutoTokenizer.from_pretrained(hf_model)
|
| 100 |
self.end_of_response_token_id = self.tokenizer("<|im_end|>").input_ids[0]
|
| 101 |
+
self.end_of_text_token_id = self.tokenizer("<|end_of_text|>").input_ids[0]
|
| 102 |
+
self.break_tokens = [self.end_of_response_token_id, self.end_of_text_token_id]
|
| 103 |
|
| 104 |
self.state = None
|
| 105 |
self.position = None
|
|
|
|
|
|
|
|
|
|
|
|
|
| 106 |
attention_mask = np.arange(self.cache_length, dtype=np.int32)
|
| 107 |
attention_mask = attention_mask[:, None] >= attention_mask[None, :]
|
| 108 |
attention_mask = attention_mask[None, None, :, :]
|
|
|
|
| 111 |
np.array(0.0, dtype=np.float16),
|
| 112 |
np.array(-np.inf, dtype=np.float16),
|
| 113 |
)
|
| 114 |
+
|
| 115 |
+
def initialize_generation(self):
|
| 116 |
+
self.state = self.generation_model.make_state()
|
| 117 |
self.position = 0
|
| 118 |
|
| 119 |
def load_prompt_model(self):
|
|
|
|
| 182 |
self.unload_prompt_model()
|
| 183 |
end_time = time.perf_counter()
|
| 184 |
print(
|
| 185 |
+
f"==== Processed {len(tokens)} tokens + {64 - len(chunk)} pad tokens in {end_time - start_time:.2f} seconds, {processed_chunks * 64 / (end_time - start_time):.2f} tokens per second, current position: {self.position}/{self.cache_length}",
|
| 186 |
)
|
| 187 |
if stop_processing:
|
| 188 |
return np.array([-1], dtype=np.int32)
|
|
|
|
| 209 |
][:, 0]
|
| 210 |
return input_id
|
| 211 |
|
| 212 |
+
async def generate(self, input_id: np.array):
|
| 213 |
+
continue_generating = True
|
| 214 |
# for i in range(max_new_tokens):
|
|
|
|
| 215 |
generated_tokens = 0
|
| 216 |
+
start_time = time.perf_counter()
|
| 217 |
+
# task = asyncio.create_task(generate_single_step(
|
| 218 |
+
# input_id,
|
| 219 |
+
# self.embed,
|
| 220 |
+
# self.generation_model,
|
| 221 |
+
# self.state,
|
| 222 |
+
# self.position,
|
| 223 |
+
# self.attention_mask,
|
| 224 |
+
# self.lm_head,
|
| 225 |
+
# ))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 226 |
|
| 227 |
+
while (self.position < self.cache_length) and continue_generating:
|
| 228 |
+
generated_tokens += 1
|
| 229 |
input_id_item = input_id.item()
|
| 230 |
+
if input_id_item in self.break_tokens:
|
| 231 |
+
continue_generating = False
|
| 232 |
+
task = asyncio.create_task(
|
| 233 |
+
generate_single_step(
|
| 234 |
+
input_id,
|
| 235 |
+
self.embed,
|
| 236 |
+
self.generation_model,
|
| 237 |
+
self.state,
|
| 238 |
+
self.position,
|
| 239 |
+
self.attention_mask,
|
| 240 |
+
self.lm_head if continue_generating else None,
|
| 241 |
+
)
|
| 242 |
+
)
|
| 243 |
self.position += 1
|
| 244 |
+
print(self.tokenizer.decode(input_id_item), end="", flush=True)
|
| 245 |
+
input_id = await task
|
| 246 |
+
|
| 247 |
+
print()
|
| 248 |
|
| 249 |
end_time = time.perf_counter()
|
| 250 |
print(
|
| 251 |
+
f"==== Generated {generated_tokens} tokens in {end_time - start_time:.2f} seconds, {generated_tokens / (end_time - start_time):.2f} tokens per second, current position: {self.position}/{self.cache_length}",
|
| 252 |
)
|
| 253 |
# if stop_generation:
|
| 254 |
# self.load_prompt_model()
|
| 255 |
|
| 256 |
def loop(self):
|
| 257 |
+
print("--- Begin conversation ---")
|
|
|
|
| 258 |
while True:
|
| 259 |
+
self.initialize_generation()
|
| 260 |
+
while True:
|
| 261 |
+
print(">>> ", end="", flush=True)
|
| 262 |
+
self.load_prompt_model()
|
| 263 |
+
prompt = input()
|
| 264 |
+
prompt_result = self.process_prompt(prompt)
|
| 265 |
+
if prompt_result.item() == -1:
|
| 266 |
+
print("\n--- END OF CONVERSATION: MAX CONTEXT LENGTH REACHED ---\n")
|
| 267 |
+
print("--- Beginning new conversation ---")
|
| 268 |
+
break
|
| 269 |
+
# print(self.tokenizer.decode(prompt_result.item()), end="", flush=True)
|
| 270 |
+
asyncio.run(self.generate(prompt_result))
|
| 271 |
+
if self.position >= (self.cache_length):
|
| 272 |
+
print("\n--- END OF CONVERSATION: MAX CONTEXT LENGTH REACHED ---\n")
|
| 273 |
+
print("--- Beginning new conversation ---")
|
| 274 |
+
break
|
| 275 |
|
| 276 |
|
| 277 |
def parse_args():
|