|
---
|
|
language:
|
|
- en
|
|
license: apache-2.0
|
|
tags:
|
|
- sentence-transformers
|
|
- sentence-similarity
|
|
- feature-extraction
|
|
- generated_from_trainer
|
|
- dataset_size:6300
|
|
- loss:MatryoshkaLoss
|
|
- loss:MultipleNegativesRankingLoss
|
|
base_model: BAAI/bge-base-en-v1.5
|
|
widget:
|
|
- source_sentence: 'The Innovative Medicine segment is focused on the following therapeutic
|
|
areas: Immunology, Infectious diseases, Neuroscience, Oncology, Pulmonary Hypertension,
|
|
and Cardiovascular and Metabolic diseases.'
|
|
sentences:
|
|
- What was the primary reason for the decrease in adjusted operating income in 2023?
|
|
- What therapeutic areas does the Innovative Medicine segment of Johnson & Johnson
|
|
focus on?
|
|
- What was the remaining budget for the September 2022 Repurchase Program as of
|
|
January 28, 2023?
|
|
- source_sentence: It may be necessary in the future to seek or renew licenses relating
|
|
to various aspects of the Company’s products, processes and services. While the
|
|
Company has generally been able to obtain such licenses on commercially reasonable
|
|
terms in the past, there is no guarantee that such licenses could be obtained
|
|
in the future on reasonable terms or at all.
|
|
sentences:
|
|
- What was the percentage change in total earning assets from the previous year
|
|
as reported in 2023?
|
|
- What is Apple's approach to licenses for intellectual property owned by third
|
|
parties used in its products and services?
|
|
- Why did the Ontario class action related to the 2017 cybersecurity incident progress
|
|
differently than other cases?
|
|
- source_sentence: Assets and liabilities measured at fair value on a nonrecurring
|
|
basis in the consolidated financial statements include items such as property,
|
|
plant and equipment, ROU assets, goodwill and other intangible assets, equity
|
|
and other investments and other assets. These are measured at fair value if determined
|
|
to be impaired.
|
|
sentences:
|
|
- How are assets and liabilities that are measured at fair value on a nonrecurring
|
|
basis identified in the financial statements?
|
|
- How is goodwill reviewed for impairment in a company, and what methods are used
|
|
to determine the fair value of reporting units?
|
|
- What diversity and inclusion goals has Goldman Sachs set for its workforce by
|
|
2025?
|
|
- source_sentence: Based on management’s allocation decision, the portion of the Credit
|
|
Facility available to ME&T as of December 31, 2023 was $2.75 billion.
|
|
sentences:
|
|
- What were the components of the increase in costs related to operating channels
|
|
in 2023?
|
|
- What are the goals of American Express’s balance sheet management strategy?
|
|
- How much of the Credit Facility was available to ME&T as of December 31, 2023?
|
|
- source_sentence: Item 8 is labeled 'Financial Statements and Supplementary Data.'
|
|
sentences:
|
|
- What section of the document is labeled 'Item 8'?
|
|
- For comprehensive information on a company's legal matters, which part of the
|
|
financial statement should one consult?
|
|
- What was the return on average common stockholders’ equity for 2023?
|
|
pipeline_tag: sentence-similarity
|
|
library_name: sentence-transformers
|
|
metrics:
|
|
- cosine_accuracy@1
|
|
- cosine_accuracy@3
|
|
- cosine_accuracy@5
|
|
- cosine_accuracy@10
|
|
- cosine_precision@1
|
|
- cosine_precision@3
|
|
- cosine_precision@5
|
|
- cosine_precision@10
|
|
- cosine_recall@1
|
|
- cosine_recall@3
|
|
- cosine_recall@5
|
|
- cosine_recall@10
|
|
- cosine_ndcg@10
|
|
- cosine_mrr@10
|
|
- cosine_map@100
|
|
model-index:
|
|
- name: BGE base Financial Matryoshka
|
|
results:
|
|
- task:
|
|
type: information-retrieval
|
|
name: Information Retrieval
|
|
dataset:
|
|
name: dim 768
|
|
type: dim_768
|
|
metrics:
|
|
- type: cosine_accuracy@1
|
|
value: 0.6928571428571428
|
|
name: Cosine Accuracy@1
|
|
- type: cosine_accuracy@3
|
|
value: 0.8257142857142857
|
|
name: Cosine Accuracy@3
|
|
- type: cosine_accuracy@5
|
|
value: 0.8671428571428571
|
|
name: Cosine Accuracy@5
|
|
- type: cosine_accuracy@10
|
|
value: 0.9071428571428571
|
|
name: Cosine Accuracy@10
|
|
- type: cosine_precision@1
|
|
value: 0.6928571428571428
|
|
name: Cosine Precision@1
|
|
- type: cosine_precision@3
|
|
value: 0.2752380952380953
|
|
name: Cosine Precision@3
|
|
- type: cosine_precision@5
|
|
value: 0.1734285714285714
|
|
name: Cosine Precision@5
|
|
- type: cosine_precision@10
|
|
value: 0.0907142857142857
|
|
name: Cosine Precision@10
|
|
- type: cosine_recall@1
|
|
value: 0.6928571428571428
|
|
name: Cosine Recall@1
|
|
- type: cosine_recall@3
|
|
value: 0.8257142857142857
|
|
name: Cosine Recall@3
|
|
- type: cosine_recall@5
|
|
value: 0.8671428571428571
|
|
name: Cosine Recall@5
|
|
- type: cosine_recall@10
|
|
value: 0.9071428571428571
|
|
name: Cosine Recall@10
|
|
- type: cosine_ndcg@10
|
|
value: 0.8015678007585516
|
|
name: Cosine Ndcg@10
|
|
- type: cosine_mrr@10
|
|
value: 0.7675442176870747
|
|
name: Cosine Mrr@10
|
|
- type: cosine_map@100
|
|
value: 0.7711683558124478
|
|
name: Cosine Map@100
|
|
- task:
|
|
type: information-retrieval
|
|
name: Information Retrieval
|
|
dataset:
|
|
name: dim 512
|
|
type: dim_512
|
|
metrics:
|
|
- type: cosine_accuracy@1
|
|
value: 0.6914285714285714
|
|
name: Cosine Accuracy@1
|
|
- type: cosine_accuracy@3
|
|
value: 0.8257142857142857
|
|
name: Cosine Accuracy@3
|
|
- type: cosine_accuracy@5
|
|
value: 0.8671428571428571
|
|
name: Cosine Accuracy@5
|
|
- type: cosine_accuracy@10
|
|
value: 0.9071428571428571
|
|
name: Cosine Accuracy@10
|
|
- type: cosine_precision@1
|
|
value: 0.6914285714285714
|
|
name: Cosine Precision@1
|
|
- type: cosine_precision@3
|
|
value: 0.2752380952380952
|
|
name: Cosine Precision@3
|
|
- type: cosine_precision@5
|
|
value: 0.1734285714285714
|
|
name: Cosine Precision@5
|
|
- type: cosine_precision@10
|
|
value: 0.0907142857142857
|
|
name: Cosine Precision@10
|
|
- type: cosine_recall@1
|
|
value: 0.6914285714285714
|
|
name: Cosine Recall@1
|
|
- type: cosine_recall@3
|
|
value: 0.8257142857142857
|
|
name: Cosine Recall@3
|
|
- type: cosine_recall@5
|
|
value: 0.8671428571428571
|
|
name: Cosine Recall@5
|
|
- type: cosine_recall@10
|
|
value: 0.9071428571428571
|
|
name: Cosine Recall@10
|
|
- type: cosine_ndcg@10
|
|
value: 0.8009375601369785
|
|
name: Cosine Ndcg@10
|
|
- type: cosine_mrr@10
|
|
value: 0.7666672335600906
|
|
name: Cosine Mrr@10
|
|
- type: cosine_map@100
|
|
value: 0.7701113420260945
|
|
name: Cosine Map@100
|
|
- task:
|
|
type: information-retrieval
|
|
name: Information Retrieval
|
|
dataset:
|
|
name: dim 256
|
|
type: dim_256
|
|
metrics:
|
|
- type: cosine_accuracy@1
|
|
value: 0.6871428571428572
|
|
name: Cosine Accuracy@1
|
|
- type: cosine_accuracy@3
|
|
value: 0.8242857142857143
|
|
name: Cosine Accuracy@3
|
|
- type: cosine_accuracy@5
|
|
value: 0.8585714285714285
|
|
name: Cosine Accuracy@5
|
|
- type: cosine_accuracy@10
|
|
value: 0.9028571428571428
|
|
name: Cosine Accuracy@10
|
|
- type: cosine_precision@1
|
|
value: 0.6871428571428572
|
|
name: Cosine Precision@1
|
|
- type: cosine_precision@3
|
|
value: 0.2747619047619047
|
|
name: Cosine Precision@3
|
|
- type: cosine_precision@5
|
|
value: 0.1717142857142857
|
|
name: Cosine Precision@5
|
|
- type: cosine_precision@10
|
|
value: 0.09028571428571427
|
|
name: Cosine Precision@10
|
|
- type: cosine_recall@1
|
|
value: 0.6871428571428572
|
|
name: Cosine Recall@1
|
|
- type: cosine_recall@3
|
|
value: 0.8242857142857143
|
|
name: Cosine Recall@3
|
|
- type: cosine_recall@5
|
|
value: 0.8585714285714285
|
|
name: Cosine Recall@5
|
|
- type: cosine_recall@10
|
|
value: 0.9028571428571428
|
|
name: Cosine Recall@10
|
|
- type: cosine_ndcg@10
|
|
value: 0.7965630325935761
|
|
name: Cosine Ndcg@10
|
|
- type: cosine_mrr@10
|
|
value: 0.7623344671201813
|
|
name: Cosine Mrr@10
|
|
- type: cosine_map@100
|
|
value: 0.7659656636117955
|
|
name: Cosine Map@100
|
|
- task:
|
|
type: information-retrieval
|
|
name: Information Retrieval
|
|
dataset:
|
|
name: dim 128
|
|
type: dim_128
|
|
metrics:
|
|
- type: cosine_accuracy@1
|
|
value: 0.6728571428571428
|
|
name: Cosine Accuracy@1
|
|
- type: cosine_accuracy@3
|
|
value: 0.8085714285714286
|
|
name: Cosine Accuracy@3
|
|
- type: cosine_accuracy@5
|
|
value: 0.8485714285714285
|
|
name: Cosine Accuracy@5
|
|
- type: cosine_accuracy@10
|
|
value: 0.8871428571428571
|
|
name: Cosine Accuracy@10
|
|
- type: cosine_precision@1
|
|
value: 0.6728571428571428
|
|
name: Cosine Precision@1
|
|
- type: cosine_precision@3
|
|
value: 0.26952380952380944
|
|
name: Cosine Precision@3
|
|
- type: cosine_precision@5
|
|
value: 0.16971428571428568
|
|
name: Cosine Precision@5
|
|
- type: cosine_precision@10
|
|
value: 0.0887142857142857
|
|
name: Cosine Precision@10
|
|
- type: cosine_recall@1
|
|
value: 0.6728571428571428
|
|
name: Cosine Recall@1
|
|
- type: cosine_recall@3
|
|
value: 0.8085714285714286
|
|
name: Cosine Recall@3
|
|
- type: cosine_recall@5
|
|
value: 0.8485714285714285
|
|
name: Cosine Recall@5
|
|
- type: cosine_recall@10
|
|
value: 0.8871428571428571
|
|
name: Cosine Recall@10
|
|
- type: cosine_ndcg@10
|
|
value: 0.7820355932651222
|
|
name: Cosine Ndcg@10
|
|
- type: cosine_mrr@10
|
|
value: 0.7480856009070294
|
|
name: Cosine Mrr@10
|
|
- type: cosine_map@100
|
|
value: 0.7523134135641188
|
|
name: Cosine Map@100
|
|
- task:
|
|
type: information-retrieval
|
|
name: Information Retrieval
|
|
dataset:
|
|
name: dim 64
|
|
type: dim_64
|
|
metrics:
|
|
- type: cosine_accuracy@1
|
|
value: 0.6357142857142857
|
|
name: Cosine Accuracy@1
|
|
- type: cosine_accuracy@3
|
|
value: 0.7685714285714286
|
|
name: Cosine Accuracy@3
|
|
- type: cosine_accuracy@5
|
|
value: 0.8128571428571428
|
|
name: Cosine Accuracy@5
|
|
- type: cosine_accuracy@10
|
|
value: 0.86
|
|
name: Cosine Accuracy@10
|
|
- type: cosine_precision@1
|
|
value: 0.6357142857142857
|
|
name: Cosine Precision@1
|
|
- type: cosine_precision@3
|
|
value: 0.2561904761904762
|
|
name: Cosine Precision@3
|
|
- type: cosine_precision@5
|
|
value: 0.16257142857142853
|
|
name: Cosine Precision@5
|
|
- type: cosine_precision@10
|
|
value: 0.086
|
|
name: Cosine Precision@10
|
|
- type: cosine_recall@1
|
|
value: 0.6357142857142857
|
|
name: Cosine Recall@1
|
|
- type: cosine_recall@3
|
|
value: 0.7685714285714286
|
|
name: Cosine Recall@3
|
|
- type: cosine_recall@5
|
|
value: 0.8128571428571428
|
|
name: Cosine Recall@5
|
|
- type: cosine_recall@10
|
|
value: 0.86
|
|
name: Cosine Recall@10
|
|
- type: cosine_ndcg@10
|
|
value: 0.7472648621107045
|
|
name: Cosine Ndcg@10
|
|
- type: cosine_mrr@10
|
|
value: 0.7111729024943308
|
|
name: Cosine Mrr@10
|
|
- type: cosine_map@100
|
|
value: 0.7168773691247933
|
|
name: Cosine Map@100
|
|
---
|
|
|
|
# BGE base Financial Matryoshka
|
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
|
|
|
## Model Details
|
|
|
|
### Model Description
|
|
- **Model Type:** Sentence Transformer
|
|
- **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) <!-- at revision a5beb1e3e68b9ab74eb54cfd186867f64f240e1a -->
|
|
- **Maximum Sequence Length:** 512 tokens
|
|
- **Output Dimensionality:** 768 dimensions
|
|
- **Similarity Function:** Cosine Similarity
|
|
- **Training Dataset:**
|
|
- json
|
|
- **Language:** en
|
|
- **License:** apache-2.0
|
|
|
|
### Model Sources
|
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
|
|
|
### Full Model Architecture
|
|
|
|
```
|
|
SentenceTransformer(
|
|
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
|
|
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
|
(2): Normalize()
|
|
)
|
|
```
|
|
|
|
## Usage
|
|
|
|
### Direct Usage (Sentence Transformers)
|
|
|
|
First install the Sentence Transformers library:
|
|
|
|
```bash
|
|
pip install -U sentence-transformers
|
|
```
|
|
|
|
Then you can load this model and run inference.
|
|
```python
|
|
from sentence_transformers import SentenceTransformer
|
|
|
|
# Download from the 🤗 Hub
|
|
model = SentenceTransformer("schawla2/bge-base-financial-matryoshka")
|
|
# Run inference
|
|
sentences = [
|
|
"Item 8 is labeled 'Financial Statements and Supplementary Data.'",
|
|
"What section of the document is labeled 'Item 8'?",
|
|
"For comprehensive information on a company's legal matters, which part of the financial statement should one consult?",
|
|
]
|
|
embeddings = model.encode(sentences)
|
|
print(embeddings.shape)
|
|
# [3, 768]
|
|
|
|
# Get the similarity scores for the embeddings
|
|
similarities = model.similarity(embeddings, embeddings)
|
|
print(similarities.shape)
|
|
# [3, 3]
|
|
```
|
|
|
|
<!--
|
|
### Direct Usage (Transformers)
|
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary>
|
|
|
|
</details>
|
|
-->
|
|
|
|
<!--
|
|
### Downstream Usage (Sentence Transformers)
|
|
|
|
You can finetune this model on your own dataset.
|
|
|
|
<details><summary>Click to expand</summary>
|
|
|
|
</details>
|
|
-->
|
|
|
|
<!--
|
|
### Out-of-Scope Use
|
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
|
-->
|
|
|
|
## Evaluation
|
|
|
|
### Metrics
|
|
|
|
#### Information Retrieval
|
|
|
|
* Datasets: `dim_768`, `dim_512`, `dim_256`, `dim_128` and `dim_64`
|
|
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
|
|
|
|
| Metric | dim_768 | dim_512 | dim_256 | dim_128 | dim_64 |
|
|
|:--------------------|:-----------|:-----------|:-----------|:----------|:-----------|
|
|
| cosine_accuracy@1 | 0.6929 | 0.6914 | 0.6871 | 0.6729 | 0.6357 |
|
|
| cosine_accuracy@3 | 0.8257 | 0.8257 | 0.8243 | 0.8086 | 0.7686 |
|
|
| cosine_accuracy@5 | 0.8671 | 0.8671 | 0.8586 | 0.8486 | 0.8129 |
|
|
| cosine_accuracy@10 | 0.9071 | 0.9071 | 0.9029 | 0.8871 | 0.86 |
|
|
| cosine_precision@1 | 0.6929 | 0.6914 | 0.6871 | 0.6729 | 0.6357 |
|
|
| cosine_precision@3 | 0.2752 | 0.2752 | 0.2748 | 0.2695 | 0.2562 |
|
|
| cosine_precision@5 | 0.1734 | 0.1734 | 0.1717 | 0.1697 | 0.1626 |
|
|
| cosine_precision@10 | 0.0907 | 0.0907 | 0.0903 | 0.0887 | 0.086 |
|
|
| cosine_recall@1 | 0.6929 | 0.6914 | 0.6871 | 0.6729 | 0.6357 |
|
|
| cosine_recall@3 | 0.8257 | 0.8257 | 0.8243 | 0.8086 | 0.7686 |
|
|
| cosine_recall@5 | 0.8671 | 0.8671 | 0.8586 | 0.8486 | 0.8129 |
|
|
| cosine_recall@10 | 0.9071 | 0.9071 | 0.9029 | 0.8871 | 0.86 |
|
|
| **cosine_ndcg@10** | **0.8016** | **0.8009** | **0.7966** | **0.782** | **0.7473** |
|
|
| cosine_mrr@10 | 0.7675 | 0.7667 | 0.7623 | 0.7481 | 0.7112 |
|
|
| cosine_map@100 | 0.7712 | 0.7701 | 0.766 | 0.7523 | 0.7169 |
|
|
|
|
<!--
|
|
## Bias, Risks and Limitations
|
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
|
-->
|
|
|
|
<!--
|
|
### Recommendations
|
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
|
-->
|
|
|
|
## Training Details
|
|
|
|
### Training Dataset
|
|
|
|
#### json
|
|
|
|
* Dataset: json
|
|
* Size: 6,300 training samples
|
|
* Columns: <code>positive</code> and <code>anchor</code>
|
|
* Approximate statistics based on the first 1000 samples:
|
|
| | positive | anchor |
|
|
|:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
|
|
| type | string | string |
|
|
| details | <ul><li>min: 4 tokens</li><li>mean: 45.97 tokens</li><li>max: 326 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 20.57 tokens</li><li>max: 46 tokens</li></ul> |
|
|
* Samples:
|
|
| positive | anchor |
|
|
|:----------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------|
|
|
| <code>In 2023, Delta took delivery of 43 aircraft.</code> | <code>How many new aircraft did Delta Air Lines take delivery of in 2023?</code> |
|
|
| <code>Item 8 incorporates pages 44 through 121 of IBM’s 2023 Annual Report to Stockholders by reference.</code> | <code>What sections of IBM's 2023 Annual Report are incorporated into Item 8 of the Form 10-K?</code> |
|
|
| <code>Total borrowings at the end of 2023 were $29.3 billion.</code> | <code>What was the total amount of debt the Company had at the end of 2023?</code> |
|
|
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
|
|
```json
|
|
{
|
|
"loss": "MultipleNegativesRankingLoss",
|
|
"matryoshka_dims": [
|
|
768,
|
|
512,
|
|
256,
|
|
128,
|
|
64
|
|
],
|
|
"matryoshka_weights": [
|
|
1,
|
|
1,
|
|
1,
|
|
1,
|
|
1
|
|
],
|
|
"n_dims_per_step": -1
|
|
}
|
|
```
|
|
|
|
### Training Hyperparameters
|
|
#### Non-Default Hyperparameters
|
|
|
|
- `eval_strategy`: epoch
|
|
- `per_device_train_batch_size`: 32
|
|
- `per_device_eval_batch_size`: 16
|
|
- `gradient_accumulation_steps`: 16
|
|
- `learning_rate`: 2e-05
|
|
- `num_train_epochs`: 4
|
|
- `lr_scheduler_type`: cosine
|
|
- `warmup_ratio`: 0.1
|
|
- `bf16`: True
|
|
- `tf32`: True
|
|
- `load_best_model_at_end`: True
|
|
- `optim`: adamw_torch_fused
|
|
- `batch_sampler`: no_duplicates
|
|
|
|
#### All Hyperparameters
|
|
<details><summary>Click to expand</summary>
|
|
|
|
- `overwrite_output_dir`: False
|
|
- `do_predict`: False
|
|
- `eval_strategy`: epoch
|
|
- `prediction_loss_only`: True
|
|
- `per_device_train_batch_size`: 32
|
|
- `per_device_eval_batch_size`: 16
|
|
- `per_gpu_train_batch_size`: None
|
|
- `per_gpu_eval_batch_size`: None
|
|
- `gradient_accumulation_steps`: 16
|
|
- `eval_accumulation_steps`: None
|
|
- `torch_empty_cache_steps`: None
|
|
- `learning_rate`: 2e-05
|
|
- `weight_decay`: 0.0
|
|
- `adam_beta1`: 0.9
|
|
- `adam_beta2`: 0.999
|
|
- `adam_epsilon`: 1e-08
|
|
- `max_grad_norm`: 1.0
|
|
- `num_train_epochs`: 4
|
|
- `max_steps`: -1
|
|
- `lr_scheduler_type`: cosine
|
|
- `lr_scheduler_kwargs`: {}
|
|
- `warmup_ratio`: 0.1
|
|
- `warmup_steps`: 0
|
|
- `log_level`: passive
|
|
- `log_level_replica`: warning
|
|
- `log_on_each_node`: True
|
|
- `logging_nan_inf_filter`: True
|
|
- `save_safetensors`: True
|
|
- `save_on_each_node`: False
|
|
- `save_only_model`: False
|
|
- `restore_callback_states_from_checkpoint`: False
|
|
- `no_cuda`: False
|
|
- `use_cpu`: False
|
|
- `use_mps_device`: False
|
|
- `seed`: 42
|
|
- `data_seed`: None
|
|
- `jit_mode_eval`: False
|
|
- `use_ipex`: False
|
|
- `bf16`: True
|
|
- `fp16`: False
|
|
- `fp16_opt_level`: O1
|
|
- `half_precision_backend`: auto
|
|
- `bf16_full_eval`: False
|
|
- `fp16_full_eval`: False
|
|
- `tf32`: True
|
|
- `local_rank`: 0
|
|
- `ddp_backend`: None
|
|
- `tpu_num_cores`: None
|
|
- `tpu_metrics_debug`: False
|
|
- `debug`: []
|
|
- `dataloader_drop_last`: False
|
|
- `dataloader_num_workers`: 0
|
|
- `dataloader_prefetch_factor`: None
|
|
- `past_index`: -1
|
|
- `disable_tqdm`: False
|
|
- `remove_unused_columns`: True
|
|
- `label_names`: None
|
|
- `load_best_model_at_end`: True
|
|
- `ignore_data_skip`: False
|
|
- `fsdp`: []
|
|
- `fsdp_min_num_params`: 0
|
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
|
- `fsdp_transformer_layer_cls_to_wrap`: None
|
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
|
- `deepspeed`: None
|
|
- `label_smoothing_factor`: 0.0
|
|
- `optim`: adamw_torch_fused
|
|
- `optim_args`: None
|
|
- `adafactor`: False
|
|
- `group_by_length`: False
|
|
- `length_column_name`: length
|
|
- `ddp_find_unused_parameters`: None
|
|
- `ddp_bucket_cap_mb`: None
|
|
- `ddp_broadcast_buffers`: False
|
|
- `dataloader_pin_memory`: True
|
|
- `dataloader_persistent_workers`: False
|
|
- `skip_memory_metrics`: True
|
|
- `use_legacy_prediction_loop`: False
|
|
- `push_to_hub`: False
|
|
- `resume_from_checkpoint`: None
|
|
- `hub_model_id`: None
|
|
- `hub_strategy`: every_save
|
|
- `hub_private_repo`: None
|
|
- `hub_always_push`: False
|
|
- `gradient_checkpointing`: False
|
|
- `gradient_checkpointing_kwargs`: None
|
|
- `include_inputs_for_metrics`: False
|
|
- `include_for_metrics`: []
|
|
- `eval_do_concat_batches`: True
|
|
- `fp16_backend`: auto
|
|
- `push_to_hub_model_id`: None
|
|
- `push_to_hub_organization`: None
|
|
- `mp_parameters`:
|
|
- `auto_find_batch_size`: False
|
|
- `full_determinism`: False
|
|
- `torchdynamo`: None
|
|
- `ray_scope`: last
|
|
- `ddp_timeout`: 1800
|
|
- `torch_compile`: False
|
|
- `torch_compile_backend`: None
|
|
- `torch_compile_mode`: None
|
|
- `dispatch_batches`: None
|
|
- `split_batches`: None
|
|
- `include_tokens_per_second`: False
|
|
- `include_num_input_tokens_seen`: False
|
|
- `neftune_noise_alpha`: None
|
|
- `optim_target_modules`: None
|
|
- `batch_eval_metrics`: False
|
|
- `eval_on_start`: False
|
|
- `use_liger_kernel`: False
|
|
- `eval_use_gather_object`: False
|
|
- `average_tokens_across_devices`: False
|
|
- `prompts`: None
|
|
- `batch_sampler`: no_duplicates
|
|
- `multi_dataset_batch_sampler`: proportional
|
|
|
|
</details>
|
|
|
|
### Training Logs
|
|
| Epoch | Step | Training Loss | dim_768_cosine_ndcg@10 | dim_512_cosine_ndcg@10 | dim_256_cosine_ndcg@10 | dim_128_cosine_ndcg@10 | dim_64_cosine_ndcg@10 |
|
|
|:-------:|:------:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|
|
|
| 0.8122 | 10 | 24.5441 | - | - | - | - | - |
|
|
| 1.0 | 13 | - | 0.7920 | 0.7932 | 0.7878 | 0.7699 | 0.7305 |
|
|
| 1.5685 | 20 | 10.1942 | - | - | - | - | - |
|
|
| 2.0 | 26 | - | 0.7998 | 0.7988 | 0.7968 | 0.7818 | 0.7443 |
|
|
| 2.3249 | 30 | 6.8787 | - | - | - | - | - |
|
|
| **3.0** | **39** | **-** | **0.8014** | **0.8015** | **0.7976** | **0.7825** | **0.7503** |
|
|
| 3.0812 | 40 | 6.1782 | - | - | - | - | - |
|
|
| 3.7310 | 48 | - | 0.8016 | 0.8009 | 0.7966 | 0.7820 | 0.7473 |
|
|
|
|
* The bold row denotes the saved checkpoint.
|
|
|
|
### Framework Versions
|
|
- Python: 3.10.16
|
|
- Sentence Transformers: 3.3.1
|
|
- Transformers: 4.48.1
|
|
- PyTorch: 2.5.1+cu124
|
|
- Accelerate: 1.3.0
|
|
- Datasets: 3.3.2
|
|
- Tokenizers: 0.21.0
|
|
|
|
## Citation
|
|
|
|
### BibTeX
|
|
|
|
#### Sentence Transformers
|
|
```bibtex
|
|
@inproceedings{reimers-2019-sentence-bert,
|
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
|
author = "Reimers, Nils and Gurevych, Iryna",
|
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
|
month = "11",
|
|
year = "2019",
|
|
publisher = "Association for Computational Linguistics",
|
|
url = "https://arxiv.org/abs/1908.10084",
|
|
}
|
|
```
|
|
|
|
#### MatryoshkaLoss
|
|
```bibtex
|
|
@misc{kusupati2024matryoshka,
|
|
title={Matryoshka Representation Learning},
|
|
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
|
|
year={2024},
|
|
eprint={2205.13147},
|
|
archivePrefix={arXiv},
|
|
primaryClass={cs.LG}
|
|
}
|
|
```
|
|
|
|
#### MultipleNegativesRankingLoss
|
|
```bibtex
|
|
@misc{henderson2017efficient,
|
|
title={Efficient Natural Language Response Suggestion for Smart Reply},
|
|
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
|
|
year={2017},
|
|
eprint={1705.00652},
|
|
archivePrefix={arXiv},
|
|
primaryClass={cs.CL}
|
|
}
|
|
```
|
|
|
|
<!--
|
|
## Glossary
|
|
|
|
*Clearly define terms in order to be accessible across audiences.*
|
|
-->
|
|
|
|
<!--
|
|
## Model Card Authors
|
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
|
-->
|
|
|
|
<!--
|
|
## Model Card Contact
|
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
|
--> |