File size: 26,886 Bytes
1a3c68f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
---

language:
- en
license: apache-2.0
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:6300
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
base_model: BAAI/bge-base-en-v1.5
widget:
- source_sentence: 'The Innovative Medicine segment is focused on the following therapeutic

    areas: Immunology, Infectious diseases, Neuroscience, Oncology, Pulmonary Hypertension,

    and Cardiovascular and Metabolic diseases.'
  sentences:
  - What was the primary reason for the decrease in adjusted operating income in 2023?
  - What therapeutic areas does the Innovative Medicine segment of Johnson & Johnson
    focus on?
  - What was the remaining budget for the September 2022 Repurchase Program as of
    January 28, 2023?
- source_sentence: It may be necessary in the future to seek or renew licenses relating
    to various aspects of the Company’s products, processes and services. While the
    Company has generally been able to obtain such licenses on commercially reasonable
    terms in the past, there is no guarantee that such licenses could be obtained
    in the future on reasonable terms or at all.
  sentences:
  - What was the percentage change in total earning assets from the previous year
    as reported in 2023?
  - What is Apple's approach to licenses for intellectual property owned by third
    parties used in its products and services?
  - Why did the Ontario class action related to the 2017 cybersecurity incident progress
    differently than other cases?
- source_sentence: Assets and liabilities measured at fair value on a nonrecurring
    basis in the consolidated financial statements include items such as property,
    plant and equipment, ROU assets, goodwill and other intangible assets, equity
    and other investments and other assets. These are measured at fair value if determined
    to be impaired.
  sentences:
  - How are assets and liabilities that are measured at fair value on a nonrecurring
    basis identified in the financial statements?
  - How is goodwill reviewed for impairment in a company, and what methods are used
    to determine the fair value of reporting units?
  - What diversity and inclusion goals has Goldman Sachs set for its workforce by
    2025?
- source_sentence: Based on management’s allocation decision, the portion of the Credit
    Facility available to ME&T as of December 31, 2023 was $2.75 billion.
  sentences:
  - What were the components of the increase in costs related to operating channels
    in 2023?
  - What are the goals of American Express’s balance sheet management strategy?
  - How much of the Credit Facility was available to ME&T as of December 31, 2023?
- source_sentence: Item 8 is labeled 'Financial Statements and Supplementary Data.'
  sentences:
  - What section of the document is labeled 'Item 8'?
  - For comprehensive information on a company's legal matters, which part of the
    financial statement should one consult?
  - What was the return on average common stockholders’ equity for 2023?
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
model-index:
- name: BGE base Financial Matryoshka
  results:
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 768
      type: dim_768
    metrics:
    - type: cosine_accuracy@1
      value: 0.6928571428571428
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.8257142857142857
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.8671428571428571
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9071428571428571
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.6928571428571428
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.2752380952380953
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.1734285714285714
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.0907142857142857
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.6928571428571428
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.8257142857142857
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.8671428571428571
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.9071428571428571
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.8015678007585516
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.7675442176870747
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.7711683558124478
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 512
      type: dim_512
    metrics:
    - type: cosine_accuracy@1
      value: 0.6914285714285714
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.8257142857142857
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.8671428571428571
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9071428571428571
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.6914285714285714
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.2752380952380952
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.1734285714285714
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.0907142857142857
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.6914285714285714
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.8257142857142857
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.8671428571428571
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.9071428571428571
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.8009375601369785
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.7666672335600906
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.7701113420260945
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 256
      type: dim_256
    metrics:
    - type: cosine_accuracy@1
      value: 0.6871428571428572
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.8242857142857143
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.8585714285714285
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9028571428571428
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.6871428571428572
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.2747619047619047
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.1717142857142857
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09028571428571427
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.6871428571428572
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.8242857142857143
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.8585714285714285
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.9028571428571428
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.7965630325935761
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.7623344671201813
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.7659656636117955
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 128
      type: dim_128
    metrics:
    - type: cosine_accuracy@1
      value: 0.6728571428571428
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.8085714285714286
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.8485714285714285
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.8871428571428571
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.6728571428571428
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.26952380952380944
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.16971428571428568
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.0887142857142857
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.6728571428571428
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.8085714285714286
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.8485714285714285
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.8871428571428571
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.7820355932651222
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.7480856009070294
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.7523134135641188
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 64
      type: dim_64
    metrics:
    - type: cosine_accuracy@1
      value: 0.6357142857142857
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.7685714285714286
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.8128571428571428
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.86
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.6357142857142857
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.2561904761904762
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.16257142857142853
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.086
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.6357142857142857
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.7685714285714286
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.8128571428571428
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.86
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.7472648621107045
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.7111729024943308
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.7168773691247933
      name: Cosine Map@100
---


# BGE base Financial Matryoshka

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) <!-- at revision a5beb1e3e68b9ab74eb54cfd186867f64f240e1a -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
    - json
- **Language:** en
- **License:** apache-2.0

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```

SentenceTransformer(

  (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel 

  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})

  (2): Normalize()

)

```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash

pip install -U sentence-transformers

```

Then you can load this model and run inference.
```python

from sentence_transformers import SentenceTransformer



# Download from the 🤗 Hub

model = SentenceTransformer("schawla2/bge-base-financial-matryoshka")

# Run inference

sentences = [

    "Item 8 is labeled 'Financial Statements and Supplementary Data.'",

    "What section of the document is labeled 'Item 8'?",

    "For comprehensive information on a company's legal matters, which part of the financial statement should one consult?",

]

embeddings = model.encode(sentences)

print(embeddings.shape)

# [3, 768]



# Get the similarity scores for the embeddings

similarities = model.similarity(embeddings, embeddings)

print(similarities.shape)

# [3, 3]

```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Information Retrieval

* Datasets: `dim_768`, `dim_512`, `dim_256`, `dim_128` and `dim_64`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | dim_768    | dim_512    | dim_256    | dim_128   | dim_64     |

|:--------------------|:-----------|:-----------|:-----------|:----------|:-----------|

| cosine_accuracy@1   | 0.6929     | 0.6914     | 0.6871     | 0.6729    | 0.6357     |
| cosine_accuracy@3   | 0.8257     | 0.8257     | 0.8243     | 0.8086    | 0.7686     |

| cosine_accuracy@5   | 0.8671     | 0.8671     | 0.8586     | 0.8486    | 0.8129     |
| cosine_accuracy@10  | 0.9071     | 0.9071     | 0.9029     | 0.8871    | 0.86       |

| cosine_precision@1  | 0.6929     | 0.6914     | 0.6871     | 0.6729    | 0.6357     |
| cosine_precision@3  | 0.2752     | 0.2752     | 0.2748     | 0.2695    | 0.2562     |

| cosine_precision@5  | 0.1734     | 0.1734     | 0.1717     | 0.1697    | 0.1626     |
| cosine_precision@10 | 0.0907     | 0.0907     | 0.0903     | 0.0887    | 0.086      |

| cosine_recall@1     | 0.6929     | 0.6914     | 0.6871     | 0.6729    | 0.6357     |
| cosine_recall@3     | 0.8257     | 0.8257     | 0.8243     | 0.8086    | 0.7686     |

| cosine_recall@5     | 0.8671     | 0.8671     | 0.8586     | 0.8486    | 0.8129     |
| cosine_recall@10    | 0.9071     | 0.9071     | 0.9029     | 0.8871    | 0.86       |

| **cosine_ndcg@10**  | **0.8016** | **0.8009** | **0.7966** | **0.782** | **0.7473** |

| cosine_mrr@10       | 0.7675     | 0.7667     | 0.7623     | 0.7481    | 0.7112     |
| cosine_map@100      | 0.7712     | 0.7701     | 0.766      | 0.7523    | 0.7169     |



<!--

## Bias, Risks and Limitations



*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*

-->



<!--

### Recommendations



*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*

-->



## Training Details



### Training Dataset



#### json



* Dataset: json

* Size: 6,300 training samples

* Columns: <code>positive</code> and <code>anchor</code>

* Approximate statistics based on the first 1000 samples:

  |         | positive                                                                           | anchor                                                                            |

  |:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|

  | type    | string                                                                             | string                                                                            |

  | details | <ul><li>min: 4 tokens</li><li>mean: 45.97 tokens</li><li>max: 326 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 20.57 tokens</li><li>max: 46 tokens</li></ul> |

* Samples:

  | positive                                                                                                        | anchor                                                                                                |

  |:----------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------|

  | <code>In 2023, Delta took delivery of 43 aircraft.</code>                                                       | <code>How many new aircraft did Delta Air Lines take delivery of in 2023?</code>                      |

  | <code>Item 8 incorporates pages 44 through 121 of IBM’s 2023 Annual Report to Stockholders by reference.</code> | <code>What sections of IBM's 2023 Annual Report are incorporated into Item 8 of the Form 10-K?</code> |

  | <code>Total borrowings at the end of 2023 were $29.3 billion.</code>                                            | <code>What was the total amount of debt the Company had at the end of 2023?</code>                    |

* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:

  ```json

  {

      "loss": "MultipleNegativesRankingLoss",

      "matryoshka_dims": [
          768,

          512,

          256,

          128,

          64

      ],

      "matryoshka_weights": [

          1,

          1,

          1,

          1,

          1

      ],

      "n_dims_per_step": -1

  }

  ```


### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: epoch
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `gradient_accumulation_steps`: 16
- `learning_rate`: 2e-05
- `num_train_epochs`: 4
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.1
- `bf16`: True
- `tf32`: True
- `load_best_model_at_end`: True
- `optim`: adamw_torch_fused
- `batch_sampler`: no_duplicates



#### All Hyperparameters

<details><summary>Click to expand</summary>



- `overwrite_output_dir`: False

- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 16
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 4
- `max_steps`: -1
- `lr_scheduler_type`: cosine
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: True
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}

- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch_fused
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save

- `hub_private_repo`: None

- `hub_always_push`: False

- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: no_duplicates

- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch   | Step   | Training Loss | dim_768_cosine_ndcg@10 | dim_512_cosine_ndcg@10 | dim_256_cosine_ndcg@10 | dim_128_cosine_ndcg@10 | dim_64_cosine_ndcg@10 |

|:-------:|:------:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|

| 0.8122  | 10     | 24.5441       | -                      | -                      | -                      | -                      | -                     |

| 1.0     | 13     | -             | 0.7920                 | 0.7932                 | 0.7878                 | 0.7699                 | 0.7305                |

| 1.5685  | 20     | 10.1942       | -                      | -                      | -                      | -                      | -                     |

| 2.0     | 26     | -             | 0.7998                 | 0.7988                 | 0.7968                 | 0.7818                 | 0.7443                |

| 2.3249  | 30     | 6.8787        | -                      | -                      | -                      | -                      | -                     |

| **3.0** | **39** | **-**         | **0.8014**             | **0.8015**             | **0.7976**             | **0.7825**             | **0.7503**            |

| 3.0812  | 40     | 6.1782        | -                      | -                      | -                      | -                      | -                     |

| 3.7310  | 48     | -             | 0.8016                 | 0.8009                 | 0.7966                 | 0.7820                 | 0.7473                |



* The bold row denotes the saved checkpoint.



### Framework Versions

- Python: 3.10.16

- Sentence Transformers: 3.3.1

- Transformers: 4.48.1

- PyTorch: 2.5.1+cu124

- Accelerate: 1.3.0

- Datasets: 3.3.2

- Tokenizers: 0.21.0



## Citation



### BibTeX



#### Sentence Transformers

```bibtex

@inproceedings{reimers-2019-sentence-bert,

    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",

    author = "Reimers, Nils and Gurevych, Iryna",

    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",

    month = "11",

    year = "2019",

    publisher = "Association for Computational Linguistics",

    url = "https://arxiv.org/abs/1908.10084",

}

```



#### MatryoshkaLoss

```bibtex

@misc{kusupati2024matryoshka,

    title={Matryoshka Representation Learning},

    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},

    year={2024},

    eprint={2205.13147},

    archivePrefix={arXiv},

    primaryClass={cs.LG}

}

```



#### MultipleNegativesRankingLoss

```bibtex

@misc{henderson2017efficient,

    title={Efficient Natural Language Response Suggestion for Smart Reply},

    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},

    year={2017},

    eprint={1705.00652},

    archivePrefix={arXiv},

    primaryClass={cs.CL}

}

```



<!--

## Glossary



*Clearly define terms in order to be accessible across audiences.*

-->



<!--

## Model Card Authors



*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*

-->



<!--

## Model Card Contact



*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*

-->