sabroo's picture
Upload tokenizer
527bd4c verified
metadata
base_model: facebook/w2v-bert-2.0
datasets:
  - common_voice_17_0
library_name: transformers
license: mit
metrics:
  - wer
tags:
  - generated_from_trainer
model-index:
  - name: w2v-bert-2.0-slovak-colab-CV17.0
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: common_voice_17_0
          type: common_voice_17_0
          config: sk
          split: test
          args: sk
        metrics:
          - type: wer
            value: 0.1358878674797488
            name: Wer

w2v-bert-2.0-slovak-colab-CV17.0

This model is a fine-tuned version of facebook/w2v-bert-2.0 on the common_voice_17_0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3823
  • Wer: 0.1359

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 15
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
3.1601 1.6393 300 0.4869 0.2985
0.2141 3.2787 600 0.3886 0.2144
0.1323 4.9180 900 0.3180 0.1840
0.0754 6.5574 1200 0.3019 0.1750
0.0401 8.1967 1500 0.3717 0.1525
0.022 9.8361 1800 0.3408 0.1503
0.0083 11.4754 2100 0.3489 0.1413
0.0027 13.1148 2400 0.3681 0.1358
0.0011 14.7541 2700 0.3823 0.1359

Framework versions

  • Transformers 4.45.2
  • Pytorch 2.5.1
  • Datasets 2.19.1
  • Tokenizers 0.20.1