File size: 2,452 Bytes
2b824c9
 
 
 
527bd4c
 
2b824c9
 
527bd4c
 
2b824c9
 
 
 
48587fa
527bd4c
2b824c9
 
 
 
 
 
 
527bd4c
48587fa
527bd4c
2b824c9
 
 
 
 
 
 
 
 
48587fa
 
2b824c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
48587fa
2b824c9
 
 
 
48587fa
 
 
 
 
 
 
 
 
 
 
2b824c9
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
---

base_model: facebook/w2v-bert-2.0
datasets:
- common_voice_17_0
library_name: transformers
license: mit
metrics:
- wer
tags:
- generated_from_trainer
model-index:
- name: w2v-bert-2.0-slovak-colab-CV17.0
  results:
  - task:
      type: automatic-speech-recognition
      name: Automatic Speech Recognition
    dataset:
      name: common_voice_17_0
      type: common_voice_17_0
      config: sk
      split: test
      args: sk
    metrics:
    - type: wer
      value: 0.1358878674797488
      name: Wer
---


<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# w2v-bert-2.0-slovak-colab-CV17.0

This model is a fine-tuned version of [facebook/w2v-bert-2.0](https://huggingface.co/facebook/w2v-bert-2.0) on the common_voice_17_0 dataset.

It achieves the following results on the evaluation set:

- Loss: 0.3823

- Wer: 0.1359



## Model description



More information needed



## Intended uses & limitations



More information needed



## Training and evaluation data



More information needed



## Training procedure



### Training hyperparameters



The following hyperparameters were used during training:

- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32

- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08

- lr_scheduler_type: linear

- lr_scheduler_warmup_steps: 500
- num_epochs: 15

- mixed_precision_training: Native AMP



### Training results



| Training Loss | Epoch   | Step | Validation Loss | Wer    |

|:-------------:|:-------:|:----:|:---------------:|:------:|

| 3.1601        | 1.6393  | 300  | 0.4869          | 0.2985 |

| 0.2141        | 3.2787  | 600  | 0.3886          | 0.2144 |

| 0.1323        | 4.9180  | 900  | 0.3180          | 0.1840 |

| 0.0754        | 6.5574  | 1200 | 0.3019          | 0.1750 |

| 0.0401        | 8.1967  | 1500 | 0.3717          | 0.1525 |

| 0.022         | 9.8361  | 1800 | 0.3408          | 0.1503 |

| 0.0083        | 11.4754 | 2100 | 0.3489          | 0.1413 |

| 0.0027        | 13.1148 | 2400 | 0.3681          | 0.1358 |

| 0.0011        | 14.7541 | 2700 | 0.3823          | 0.1359 |





### Framework versions



- Transformers 4.45.2

- Pytorch 2.5.1

- Datasets 2.19.1

- Tokenizers 0.20.1