File size: 2,452 Bytes
2b824c9 527bd4c 2b824c9 527bd4c 2b824c9 48587fa 527bd4c 2b824c9 527bd4c 48587fa 527bd4c 2b824c9 48587fa 2b824c9 48587fa 2b824c9 48587fa 2b824c9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 |
---
base_model: facebook/w2v-bert-2.0
datasets:
- common_voice_17_0
library_name: transformers
license: mit
metrics:
- wer
tags:
- generated_from_trainer
model-index:
- name: w2v-bert-2.0-slovak-colab-CV17.0
results:
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: common_voice_17_0
type: common_voice_17_0
config: sk
split: test
args: sk
metrics:
- type: wer
value: 0.1358878674797488
name: Wer
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# w2v-bert-2.0-slovak-colab-CV17.0
This model is a fine-tuned version of [facebook/w2v-bert-2.0](https://huggingface.co/facebook/w2v-bert-2.0) on the common_voice_17_0 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3823
- Wer: 0.1359
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 15
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-------:|:----:|:---------------:|:------:|
| 3.1601 | 1.6393 | 300 | 0.4869 | 0.2985 |
| 0.2141 | 3.2787 | 600 | 0.3886 | 0.2144 |
| 0.1323 | 4.9180 | 900 | 0.3180 | 0.1840 |
| 0.0754 | 6.5574 | 1200 | 0.3019 | 0.1750 |
| 0.0401 | 8.1967 | 1500 | 0.3717 | 0.1525 |
| 0.022 | 9.8361 | 1800 | 0.3408 | 0.1503 |
| 0.0083 | 11.4754 | 2100 | 0.3489 | 0.1413 |
| 0.0027 | 13.1148 | 2400 | 0.3681 | 0.1358 |
| 0.0011 | 14.7541 | 2700 | 0.3823 | 0.1359 |
### Framework versions
- Transformers 4.45.2
- Pytorch 2.5.1
- Datasets 2.19.1
- Tokenizers 0.20.1
|